Featured Research

from universities, journals, and other organizations

Quantum Device Traps, Detects And Manipulates The Spin Of Single Electrons

Date:
September 28, 2007
Source:
University at Buffalo
Summary:
Engineers have made a novel device that simply and conveniently traps, detects and manipulates the single spin of an electron, overcoming some major obstacles that have prevented progress toward spintronics and spin-based quantum computing.

A semiconductor developed by UB engineers provides a novel way to trap, detect and manipulate electron spin.
Credit: Image courtesy of University at Buffalo

A novel device, developed by a team led by University at Buffalo engineers, simply and conveniently traps, detects and manipulates the single spin of an electron, overcoming some major obstacles that have prevented progress toward spintronics and spin-based quantum computing.

Published online recently in Physical Review Letters, the research paper brings closer to reality electronic devices based on the use of single spins and their promise of low-power/high-performance computing.

"The task of manipulating the spin of single electrons is a hugely daunting technological challenge that has the potential, if overcome, to open up new paradigms of nanoelectronics," said Jonathan P. Bird, Ph.D., professor of electrical engineering in the UB School of Engineering and Applied Sciences and principal investigator on the project. "In this paper, we demonstrate a novel approach that allows us to easily trap, manipulate and detect single-electron spins, in a scheme that has the potential to be scaled up in the future into dense, integrated circuits."

While several groups have recently reported the trapping of a single spin, they all have done so using quantum dots, nanoscale semiconductors that can only demonstrate spin trapping in extremely cold temperatures, below 1 degree Kelvin.

The cooling of devices or computers to that temperature is not routinely achievable, Bird said, and it makes systems far more sensitive to interference.

The UB group, by contrast, has trapped and detected spin at temperatures of about 20 degrees Kelvin, a level that Bird says should allow for the development of a viable technology, based on this approach.

In addition, the system they developed requires relatively few logic gates, the components in semiconductors that control electron flow, making scalability to complex integrated circuits very feasible.

The UB researchers achieved success through their innovative use of quantum point contacts: narrow, nanoscale constrictions that control the flow of electrical charge between two conducting regions of a semiconductor.

"It was recently predicted that it should be possible to use these constrictions to trap single spins," said Bird. "In this paper, we provide evidence that such trapping can, indeed, be achieved with quantum point contacts and that it may also be manipulated electrically."

The system they developed steers the electrical current in a semiconductor by selectively applying voltage to metallic gates that are fabricated on its surface.

These gates have a nanoscale gap between them, Bird explained, and it is in this gap where the quantum point contact forms when voltage is applied to them.

By varying the voltage applied to the gates, the width of this constriction can be squeezed continuously, until it eventually closes completely, he said.

"As we increase the charge on the gates, this begins to close that gap," explained Bird, "allowing fewer and fewer electrons to pass through until eventually they all stop going through. As we squeeze off the channel, just before the gap closes completely, we can detect the trapping of the last electron in the channel and its spin."

The trapping of spin in that instant is detected as a change in the electrical current flowing through the other half of the device, he explained.

"One region of the device is sensitive to what happens in the other region," he said.

Now that the UB researchers have trapped and detected single spin, the next step is to work on trapping and detecting two or more spins that can communicate with each other, a prerequisite for spintronics and quantum computing.

Co-authors on the paper are Youngsoo Yoon, Ph.D., a UB doctoral student in electrical engineering; L. Mourokh of Queens College and the College of Staten Island of the City University of New York; T. Morimoto, N. Aoki and Y. Ochiai of Chiba University in Japan; and J. L. Reno of Sandia National Laboratories.

The research was funded by the U.S. Department of Energy. Bird, who also has received funding from the UB Office of the Vice President for Research, was recruited to UB with a faculty recruitment grant from the New York State Office of Science, Technology and Academic Outreach (NYSTAR).


Story Source:

The above story is based on materials provided by University at Buffalo. Note: Materials may be edited for content and length.


Cite This Page:

University at Buffalo. "Quantum Device Traps, Detects And Manipulates The Spin Of Single Electrons." ScienceDaily. ScienceDaily, 28 September 2007. <www.sciencedaily.com/releases/2007/09/070927135543.htm>.
University at Buffalo. (2007, September 28). Quantum Device Traps, Detects And Manipulates The Spin Of Single Electrons. ScienceDaily. Retrieved August 2, 2014 from www.sciencedaily.com/releases/2007/09/070927135543.htm
University at Buffalo. "Quantum Device Traps, Detects And Manipulates The Spin Of Single Electrons." ScienceDaily. www.sciencedaily.com/releases/2007/09/070927135543.htm (accessed August 2, 2014).

Share This




More Matter & Energy News

Saturday, August 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Newsy (July 31, 2014) The deal will help build a massive battery factory that Tesla says will produce 500,000 lithium batteries by 2020. Video provided by Newsy
Powered by NewsLook.com
Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Cycle World (July 30, 2014) The Bonnier Motorcycle Group presents Smoked; a three part video series. In this episode the 2015 Ducati Diavel takes on the 2014 Chevy Corvette Stingray Video provided by Cycle World
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins