Featured Research

from universities, journals, and other organizations

Stem Cells In Degenerating Spinal Discs Discovered, Potential For Repair

Date:
November 4, 2007
Source:
Thomas Jefferson University
Summary:
Orthopedic researchers have for the first time found stem cells in both degenerated adult intervertebral discs of the human spine and in discs of animals. The scientists isolated cells from discarded disc tissue that could still proliferate, noting that under certain conditions, the cells could be coaxed to form bone, cartilage or fat. The work suggests that such cells might someday be used to help repair degenerating discs and remedy lower back and neck pain.

Orthopedic researchers at Jefferson Medical College have for the first time found stem cells in the intervertebral discs of the human spine, suggesting that such cells might someday be used to help repair degenerating discs and remedy lower back and neck pain.

Related Articles


Reporting November 1, 2007 in the journal Spine, a team led by Makarand Risbud, Ph.D., and Irving Shapiro, Ph.D., at Jefferson Medical College of Thomas Jefferson University in Philadelphia, have found stem cells in both degenerated adult human discs and in discs of animals.

Many people suffer from lower back pain, and treatment ranges from painkillers such as acetominophen to medical procedures, such as fusing vertebrae. The combined annual costs for treatment of back pain and disc disease is approximately $100 billion a year and a major cause of lost work in the United States.

According to Dr. Shapiro, as the discs in the spine degenerate, cells are lost and the ability to produce water-binding molecules called proteoglycans is decreased. The water absorbs forces on the spine, essentially serving as shock absorbers. Losing proteoglycans can result in damage to the disc, and sometimes, pain.

"It would be wonderful if we could get the cells in the intervertebral disc to regenerate or increase the amount of proteoglycans that they synthesize," he says. "That way we could regenerate the shock-absorbing capabilities of the spine."

Dr. Risbud, an assistant professor of Orthopedic Surgery, and Dr. Shapiro, who is professor of Orthopedic Surgery, both at Jefferson Medical College, and their co-workers asked if it was possible to regenerate proteoglycans using adult stem cells. Federal regulations prevent them from using embryonic stem cells.

Dr. Risbud built the study around the observation that while the tissue that he could isolate from the disc was no longer binding water, the tissue still might contain dormant stem cells. He thought that while these cells were no longer functioning to repair the damaged disc, under appropriate conditions, they could be activated.

To explore that possibility, he isolated cells from discarded disc tissue that still had the capacity to proliferate. Dr. Risbud notes that under certain conditions, the cells could be encouraged to form bone. In other conditions, the cells would form cartilage or even fat. The tests proved that these cells were indeed dormant disc stem cells. "If we are able to stimulate the 'silent' cells in the patient, then it may be possible to repair the ravages of degenerative disc disease without undergoing invasive surgical procedures that may limit the motion of the spine," he says.

According to Dr. Risbud, in earlier work, the researchers found that local conditions in the disc can promote adult stem cells of the bone marrow to acquire characteristics of disc cells. Within the disc, the local conditions are unique in that the oxygen levels are low. These conditions cause the expression of many specialized molecules, including the water-binding proteoglycans. Some of the researchers' current experiments focus on the use of adult stem cells to repair the degenerate intervertebral disc.

Shapiro notes that other researchers have taken bone marrow stem cells and have made new bone, cartilage and fat tissue. "Our next step is to activate these disc stem cells and get them to repopulate the disc and make proteoglycans and restore the water-binding,

The scientists theorize that because the stem cells exist in the degenerate disk, there may be molecules that are blocking stem cell activity. "Something is inhibiting the disc repair process," says Dr. Shapiro. Drs. Shapiro and Risbud agree that "new studies are needed to discover the nature of such inhibitory molecules" and to find ways to block their activities, promoting natural healing.

The work was supported by the National Institutes of Health.


Story Source:

The above story is based on materials provided by Thomas Jefferson University. Note: Materials may be edited for content and length.


Cite This Page:

Thomas Jefferson University. "Stem Cells In Degenerating Spinal Discs Discovered, Potential For Repair." ScienceDaily. ScienceDaily, 4 November 2007. <www.sciencedaily.com/releases/2007/11/071101084959.htm>.
Thomas Jefferson University. (2007, November 4). Stem Cells In Degenerating Spinal Discs Discovered, Potential For Repair. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2007/11/071101084959.htm
Thomas Jefferson University. "Stem Cells In Degenerating Spinal Discs Discovered, Potential For Repair." ScienceDaily. www.sciencedaily.com/releases/2007/11/071101084959.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com
Madagascar Working to Contain Plague Outbreak

Madagascar Working to Contain Plague Outbreak

AFP (Nov. 24, 2014) Madagascar said Monday it is trying to contain an outbreak of plague -- similar to the Black Death that swept Medieval Europe -- that has killed 40 people and is spreading to the capital Antananarivo. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins