Featured Research

from universities, journals, and other organizations

A New Model To Simulate Forest Growth

Date:
November 21, 2007
Source:
Universidad Politécnica de Madrid
Summary:
A simulator modeling the evolution of a forest applies computational geometry to the problem of understanding forest growth. Tree development within a forest largely depends on how much space they have both on the ground and in the air, around the treetops. Trees compete to dominate the space they need to develop.

Forest in Maryland, USA. Tree development within a forest largely depends on how much space trees have both on the ground and in the air, around the treetops.
Credit: Michele Hogan

The Algorithm Engineering Group at the UPM’s School of Computing has developed, in conjunction with a forestry engineer from the University of Córdoba, a simulator modelling the evolution of a forest. This tool, called Vorest, is a forestry engineering research aid and an excellent example of how to apply computational geometry to real-world problems.

Related Articles


Tree development within a forest largely depends on how much space they have both on the ground and in the air, around the treetops. Trees compete to dominate the space they need to develop, and this relates these biological systems directly to Voronoi diagrams. A Voronoi diagram can be seen as the space partition as a result of expanding the sites in the diagram.

Vorest users can examine what impact the space the trees take up has on the development of a forest. This includes the space transfer dynamics between neighbouring trees dictated by their life strategies, and the outcome in terms of tree growth and mortality. Vorest’s simulation process is based on the fact that any tree is surrounded by an influence region of variable size that determines the future growth of the individual tree.

User flexibility

Vorest automatically calculates the influence regions, but offers users a wide range of options for deciding how growth should be simulated depending on this region. The application outputs two key classes of visual information.

First, Vorest represents the Voronoi diagram modelling the influence regions of each of the trees loaded in the program at any point of their growth. Second, it generates a more or less detailed representation of what the trees could really be expected to look like in their natural environment. The application then is able to generate a detailed 3D scene of what the forest really looks like.

Users will be able to manipulate this scene using textures to improve soil appearance or even by configuring the SkyBox representation. This produces a basic, but effective 3D background effect. The application has a straightforward and easy-to-use interface, and users have no need of computing expertise to operate the system.

The model was developed by Manuel Abellanas and Carlos Vilas from the Department of Applied Mathematics at the Universidad Politécnica de Madrid’s School of Computing and by Begoña Abellanas from the Department of Forestry Engineering at the Universidad de Córdoba. They were advised by Professor Oscar García from Canada’s Northern British Columbia University, who was a visiting professor at the Department of Applied Mathematics this year.

Useful models

Forest simulation models or forest growth models are very useful for forest managers and forestry researchers in many respects. A forest growth model aims to describe the dynamics of the forest closely and precisely enough to meet the needs of the forester or forestry researcher.

Dynamics includes all the change processes throughout the forest’s or tree’s lifetime. The primary changes in the forestry field are related to the incorporation, growth and death of trees, a forest’s key asset. There are many forest growth models. Vorest models the individual tree.

The most common uses of these models for managers are to forecast timber production or, less often, other forestry products (cones, cork, etc.) and to simulate different forestry management alternatives with a view to decision making. The models help to forecast what long-term effects a forestry management intervention is likely to have on both timber production and the future conditions of the actual forest, as well as the impact of interventions on other forest values.

For forestry researchers, models are most useful as tools for researching forest dynamics. A forest growth model like Vorest describes the dynamics of the forest closely and precisely enough to meet the needs of forestry managers or forestry researchers.


Story Source:

The above story is based on materials provided by Universidad Politécnica de Madrid. Note: Materials may be edited for content and length.


Cite This Page:

Universidad Politécnica de Madrid. "A New Model To Simulate Forest Growth." ScienceDaily. ScienceDaily, 21 November 2007. <www.sciencedaily.com/releases/2007/11/071117111207.htm>.
Universidad Politécnica de Madrid. (2007, November 21). A New Model To Simulate Forest Growth. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2007/11/071117111207.htm
Universidad Politécnica de Madrid. "A New Model To Simulate Forest Growth." ScienceDaily. www.sciencedaily.com/releases/2007/11/071117111207.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) — As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) — Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) — Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins