Featured Research

from universities, journals, and other organizations

Diabetic Hearts Feel The Burn

Date:
November 26, 2007
Source:
Journal of Clinical Investigation
Summary:
A normal heart burns both fats and sugars for fuel. In contrast, diabetic hearts rely almost exclusively on fats for energy, leading to heart failure. PPAR-alpha and PPAR-beta/delta are proteins found in heart tissue. In the diabetic heart, enhanced activity of PPAR-alpha drives the use of fats as fuel, but the role of PPAR-beta/delta has been unknown.

A normal heart burns both fats and sugars for fuel. In contrast, diabetic hearts rely almost exclusively on fats for energy, leading to heart failure. PPAR-alpha and PPAR-beta/delta are proteins found in heart tissue.

In the diabetic heart, enhanced activity of PPAR-alpha drives the use of fats as fuel, but the role of PPAR-beta/delta has been unknown. While seeking to understand the role of these proteins in diabetic heart failure, Daniel Kelly and his colleagues at Washington University School of Medicine, Missouri, have discovered that selective activation of PPAR-beta/delta in the heart improves cardiac function in mice.

The heart of mice in which PPAR-alpha is engineered to be overexpressed only in the heart (MHC-PPAR-alpha mice) has been shown to mimic the diabetic heart -- with increased fat and decreased sugar fuel usage, and subsequent cardiac arrest.

In contrast, in this study, the hearts of mice engineered to overexpress PPAR-beta/delta only in the heart (MHC-PPAR-beta/delta mice) were shown to process sugars for energy and had function normally.

Most strikingly, the degree of heart tissue death following heart attack was reduced in MHC-PPAR-beta/delta mice compared with both normal mice and MHC-PPAR-alpha mice.

Researchers also uncovered a reason for these observed differences -- the two proteins have opposite effects on the genes responsible for sugar usage by the heart for fuel. The authors therefore suggested that heart-specific PPAR-beta/delta activation might be a useful therapy for reducing diabetes-induced heart disease in humans.

Journal article: Nuclear receptors PPAR-beta/delta and PPAR-alpha direct distinct metabolic regulatory programs in the mouse heart, Journal of Clinical Investigation, November 21, 2007


Story Source:

The above story is based on materials provided by Journal of Clinical Investigation. Note: Materials may be edited for content and length.


Cite This Page:

Journal of Clinical Investigation. "Diabetic Hearts Feel The Burn." ScienceDaily. ScienceDaily, 26 November 2007. <www.sciencedaily.com/releases/2007/11/071121172254.htm>.
Journal of Clinical Investigation. (2007, November 26). Diabetic Hearts Feel The Burn. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2007/11/071121172254.htm
Journal of Clinical Investigation. "Diabetic Hearts Feel The Burn." ScienceDaily. www.sciencedaily.com/releases/2007/11/071121172254.htm (accessed April 16, 2014).

Share This



More Health & Medicine News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com
How Mt. Everest Helped Scientists Research Diabetes

How Mt. Everest Helped Scientists Research Diabetes

Newsy (Apr. 15, 2014) British researchers were able to use Mount Everest's low altitudes to study insulin resistance. They hope to find ways to treat diabetes. Video provided by Newsy
Powered by NewsLook.com
Carpenter's Injury Leads To Hundreds Of 3-D-Printed Hands

Carpenter's Injury Leads To Hundreds Of 3-D-Printed Hands

Newsy (Apr. 14, 2014) Richard van As lost all fingers on his right hand in a woodworking accident. Now, he's used the incident to create a prosthetic to help hundreds. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins