Featured Research

from universities, journals, and other organizations

Structure Of Largest Nonvirus Particle Ever Crystallized Modeled

Date:
November 27, 2007
Source:
University of California - Los Angeles
Summary:
Researchers have modeled the structure of the largest cellular structure ever crystallized, suggesting ways to engineer the particles for drug delivery. The research study focuses on new engineered nanomaterial vaults for use as a drug-therapy vehicle.

Model of the vault derived by UCLA researchers, with applications to drug delivery.
Credit: UCLA

Researchers at UCLA's California NanoSystems Institute, the David Geffen School of Medicine at UCLA and the Howard Hughes Medical Institute have modeled the structure of the largest cellular particle ever crystallized, suggesting ways to engineer the particles for drug delivery.

The research study focuses on new engineered nanomaterial vaults for use as a drug-therapy vehicle.

The team of researchers at UCLA is led by David Eisenberg and Leonard H. Rome of the departments of biological chemistry at the Geffen School of Medicine and the California NanoSystems Institute and associate researchers Daniel H. Anderson, Valerie A. Kickhoefer and Stuart A. Sievers. Eisenberg, Anderson and Sievers are also members of the Howard Hughes Medical Institute and the UCLA--U.S. Department of Energy Institute for Genomics and Proteomics.

Vaults are large, barrel-shaped particles found in the cytoplasm of all mammalian cells; they may function in innate immunity. As naturally occurring nanoscale capsules, vaults may be useful to engineer as therapeutic delivery vehicles. For the study, the team of researchers proposed an atomic structure for the thin outer shell of the vault.

Using X-ray diffraction and computer modeling, the research team developed a draft atomic model for the major vault protein, which forms the shell-like enclosure of the vault.

"Our draft model is essentially an atomic-level vault with a completely unique structure, like a barrel with staves. It is unlike any other large structure found in nature," Rome said. "The outside of the vault structure is like an eggshell -- a continuous protective barrier with no gaps."

The shell is made up of 96 identical protein chains -- each made of 873 amino acid residues -- folded into 14 domains. Each chain forms an elongated stave of half the vault, as well as the cap of the barrel-like shell.

"These nanostructured vaults offer a human-friendly nanocontainer, like a molecular-level C-5A transport jet, with a cargo hold large enough to encompass a whole ribosome with its hundreds of proteins and nucleic acids, or enough drugs to control a cell," Eisenberg said.

The construction of the draft atomic model lays the foundation for further studies of vaults and will guide vault engineering projects focused on the targeted release of vault contents for drug delivery.

Journal citation: Anderson DH, Kickhoefer VA, Sievers SA, Rome LH, Eisenberg D (2007) Draft crystal structure of the vault shell at 9-A resolution. PLoS Biol 5(11): e318. doi:10.1371/journal.pbio.0050318

The research is supported by a National Science Foundation Nanoscience Interdisciplinary Research Team Grant, the Howard Hughes Medical Institute, the National Institutes of Health and the Department of Energy.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Los Angeles. "Structure Of Largest Nonvirus Particle Ever Crystallized Modeled." ScienceDaily. ScienceDaily, 27 November 2007. <www.sciencedaily.com/releases/2007/11/071126201401.htm>.
University of California - Los Angeles. (2007, November 27). Structure Of Largest Nonvirus Particle Ever Crystallized Modeled. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2007/11/071126201401.htm
University of California - Los Angeles. "Structure Of Largest Nonvirus Particle Ever Crystallized Modeled." ScienceDaily. www.sciencedaily.com/releases/2007/11/071126201401.htm (accessed September 23, 2014).

Share This



More Matter & Energy News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will Living Glue Be A Thing?

Will Living Glue Be A Thing?

Newsy (Sep. 23, 2014) Using proteins derived from mussels, engineers at MIT have made a supersticky underwater adhesive. They're now looking to make "living glue." Video provided by Newsy
Powered by NewsLook.com
Company Copies Keys From Photos

Company Copies Keys From Photos

Newsy (Sep. 22, 2014) A new company allows customers to make copies of keys by simply uploading a couple of photos. But could it also be great for thieves? Video provided by Newsy
Powered by NewsLook.com
The Hyped-Up Big Bang Discovery Has A Dust Problem

The Hyped-Up Big Bang Discovery Has A Dust Problem

Newsy (Sep. 22, 2014) An analysis of new satellite data casts serious doubt on a previous study about the Big Bang that was once hailed as revolutionary. Video provided by Newsy
Powered by NewsLook.com
Rockefeller Oil Heirs Switching To Clean Energy

Rockefeller Oil Heirs Switching To Clean Energy

Newsy (Sep. 22, 2014) The Rockefellers — heirs to an oil fortune that made the family name a symbol of American wealth — are switching from fossil fuels to clean energy. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins