Featured Research

from universities, journals, and other organizations

Hotspots Found For Chromosome Gene Swapping

Date:
December 4, 2007
Source:
Whitehead Institute for Biomedical Research
Summary:
During meiosis, the "crossover" gene-swapping process provides the tension needed to properly divide chromosomes. In yeast, double-strand DNA breaks (the precursors to crossovers) have been shown to happen most frequently in a band near the telomeres, which ensures that all chromosomes have sufficient crossovers. In addition, centromeres also experience high levels of double-strand DNA breaks, although these breaks are resealed rather than supporting crossovers.

Crossovers and double-strand DNA breaks do not occur randomly on yeast chromosomes during meiosis, but are greatly influenced by the proximity of the chromosome's telomere, according to research in the laboratory of Whitehead Fellow Andreas Hochwagen. This work may lead to a better understanding of developmental chromosome abnormalities and birth defects.

Meiosis is a type of cell division that produces cells with only one copy of each chromosome--spores in yeast, and eggs and sperm in higher organisms.

During meiosis, chromosome pairs line up in the middle of the cell. The chromosome pairs are then pulled apart, with complete copies of all of the chromosomes ending up at opposite sides of the cell. To ensure that the chromosomes align properly in the middle of the cell, the chromosomes crossover--swap certain sections of genes. Without the crossovers, the chromosomes could misalign and both copies of a chromosome could end up in one cell. When this happens, the cells die or suffer from severe genetic problems, such as Down syndrome.

Before a crossover can occur at a given site, both strands of a chromosome's DNA helix must be broken. About half of these double-strand DNA breaks (DSBs) are processed to form crossovers, and the rest are resealed to restore the original chromosomes. The final number of crossovers is relatively small and scientists have long wondered how cells ensure that even the smallest chromosomes undergo at least one crossover. Indeed, in almost half of Down's Syndrome cases, chromosome 21, one of the smallest human chromosomes, failed to form a crossover in one of the parents.

In a new article Massachusetts Institute of Technology graduate student Hannah Blitzblau suggests that part of the answer lies in where DSBs are formed. Blitzblau has shown that these DSBs are not scattered randomly throughout the chromosomes, but occur most frequently in a specific band near telomeres, the end caps of chromosomes. When telomeres are spliced into the central part of a chromosome, this DSB "hotspot" effect is still seen at the same distance from the new telomeres.

"This is a simple mechanism for making sure that all chromosomes, even the shortest ones, have the crossovers required for meiosis," says Blitzbau. "If the breaks occurred randomly, the smallest chromosomes often wouldn't have any crossovers."

In addition, Blitzblau showed that DSBs occur at high rates around the central part of the chromosome called the centromere, It was previously thought that DSBs and crossovers rarely occurred in this region.

"This is incredibly surprising," says Hochwagen. "The chromosomes start the crossover process in the centromeres, but divert and reseal the breaks instead."

Some of the earlier research had been done in mutant yeast strains; the Whitehead researchers say that the current work in non-mutant yeast is a more accurate representation of normal processes.

This research will help scientists understand chromosome events leading to infertility and birth defects. In addition, although this work does not touch on why some cells divide improperly, Blitzblau and Hochwagen anticipate that the technologies developed for this study will allow researchers to identify sites that are sensitive to breaks caused by agents, such as certain cancer drugs. The investigators are adapting the methods used in yeast to map break-sensitive sites in mammalian cells.

Research article: Hannah G. Blitzblau, George W. Bell, Joseph Rodriguez, Stephen P. Bell, Andreas Hochwagen, "Mapping of Meiotic Single-Stranded DNA Reveals Double-Strand-Break Hotspots near Centromeres and Telomeres", Current Biology 17(23): 2003-2012


Story Source:

The above story is based on materials provided by Whitehead Institute for Biomedical Research. Note: Materials may be edited for content and length.


Cite This Page:

Whitehead Institute for Biomedical Research. "Hotspots Found For Chromosome Gene Swapping." ScienceDaily. ScienceDaily, 4 December 2007. <www.sciencedaily.com/releases/2007/11/071129121156.htm>.
Whitehead Institute for Biomedical Research. (2007, December 4). Hotspots Found For Chromosome Gene Swapping. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2007/11/071129121156.htm
Whitehead Institute for Biomedical Research. "Hotspots Found For Chromosome Gene Swapping." ScienceDaily. www.sciencedaily.com/releases/2007/11/071129121156.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins