Featured Research

from universities, journals, and other organizations

Bacteria Can Cheat On Their Mates

Date:
December 3, 2007
Source:
University of Nottingham
Summary:
Pursuing our own short term interests by cheating on the rest of the population is not the preserve of the human race. It seems bacteria can operate in just the same way. Scientists say bacteria have another trait that might be familiar to us -- cooperating for the good of their own family.

Pursuing our own short term interests by cheating on the rest of the population is not the preserve of the human race. It seems bacteria can operate in just the same way.

Writing in the journal Nature, scientists from The University of Nottingham and The University of Edinburgh say bacteria have another trait that might be familiar to us — cooperating for the good of their own family.

Their research has shown that the problem of exploitation, which has been the focus of considerable attention in animal communication, also arises in bacteria. The study could lead to new areas of research in the treatment of infections such as those found in people with Cystic Fibrosis (CF).

For the last ten years Dr Steve Diggle from The University of Nottingham has been working on bacterial cell-to-cell communication. Together with Professor Paul Williams and Dr Miguel Cámara, in The Institute of Infection, Immunity and Inflammation, they have studied the social lifestyle of the bacterium Pseudomonas aeruginosa, the leading cause of death in CF patients. It is also often forgotten as an important cause of hospital acquired infections.

One of the major problems in the CF lung and in the environment is the formation of sticky ‘biofilms’, slime ‘cities’ of P. aeruginosa cells that are highly resistant to antibiotics. It is thought that the structuring of these biofilms within the lung is regulated by bacterial cells communicating with each other in a process known as quorum sensing (QS).

Many species of bacteria, including P. aeruginosa, use chemical signals to communicate via QS. It is generally assumed that QS is used to coordinate cooperative behaviours in bacteria that benefit the total population. However, evolutionary theory predicts that cooperation is subject to invasion by social cheaters and liars who pay none of the costs of cooperation but gain all the benefits.

In this current work, scientists have shown that bacterial communication within populations can be disrupted by the invasion of cheater cells who either do not produce the communicative signal or do not bother listening and responding to signals made by other cells. However, bacteria tend not to cheat when dealing with their close kin which is a way of indirectly assuring that their genes are passed into the next generation.

Last year after receiving a 5 year fellowship from the Royal Society Dr Diggle decided to stay at The University of Nottingham and carry on his research into the evolutionary implications of quorum sensing looking at why this type of behaviour occurs and is maintained within populations.

Dr Diggle said: “We can no longer consider bacteria to be single celled entities living and dividing in isolation of each other. They can communicate with each other, preferentially direct aid towards close relatives and even cheat on each other. Bacterial populations are a lot more sophisticated than many people have thought. Understanding the dynamics within these populations allows us to better understand evolution within chronic infections such as those found in cystic fibrosis and therefore gives us a better chance in the future of finding novel therapies. For example, if cooperation can naturally break down within populations then there is a chance we could use this to our advantage. For bugs like P. aeruginosa, the idea of ‘blocking’ the cell-to-cell signals has been an attractive proposition for some time. This has become known as ‘quorum quenching’. In the laboratory we have successfully used enzymes to break down signals which reduces toxin release.”

The ultimate challenge for the QS team at the University of Nottingham is to be able to successfully treat infections by simply cutting the lines of communication between bacterial cells.


Story Source:

The above story is based on materials provided by University of Nottingham. Note: Materials may be edited for content and length.


Cite This Page:

University of Nottingham. "Bacteria Can Cheat On Their Mates." ScienceDaily. ScienceDaily, 3 December 2007. <www.sciencedaily.com/releases/2007/11/071130223110.htm>.
University of Nottingham. (2007, December 3). Bacteria Can Cheat On Their Mates. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2007/11/071130223110.htm
University of Nottingham. "Bacteria Can Cheat On Their Mates." ScienceDaily. www.sciencedaily.com/releases/2007/11/071130223110.htm (accessed July 24, 2014).

Share This




More Plants & Animals News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dogs Appear To Become Jealous Of Owners' Attention

Dogs Appear To Become Jealous Of Owners' Attention

Newsy (July 23, 2014) — A U.C. San Diego researcher says jealousy isn't just a human trait, and dogs aren't the best at sharing the attention of humans with other dogs. Video provided by Newsy
Powered by NewsLook.com
Professor Creates Site Revealing Where People's Cats Live

Professor Creates Site Revealing Where People's Cats Live

Newsy (July 23, 2014) — ​It's called I Know Where Your Cat Lives, and you can keep hitting the "Random Cat" button to find more real cats all over the world. Video provided by Newsy
Powered by NewsLook.com
Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) — The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) — An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins