Featured Research

from universities, journals, and other organizations

Major Physics Breakthrough In Understanding Supersolidity

Date:
December 10, 2007
Source:
University of Alberta
Summary:
Physicists are reporting a major advance in the understanding of what appears to be a new state of matter -- supersolidity. Physicists have been manipulating solid helium so they can study its unusual behavior.

Physicists at the University of Alberta, in Edmonton, Alberta, Canada, have made a major advance in the understanding of what appears to be a new state of matter.

Related Articles


Prof. John Beamish, chair of the Department of Physics, and PhD student James Day work in the highly specialized field of quantum fluids and solids. At very low temperatures, helium gas turns into a liquid. Put under extreme pressure the liquid turns into a solid.

Physicists have been manipulating solid helium so they can study its unusual behaviour.

In 2004, a research team at Penn State university in the United States, led by Dr. Moses Chan, electrified the physics world when it announced that it may have discovered an entirely new state of matter -- supersolidity. The team made the discovery by cooling solid helium to an extremely low temperature and oscillating the material at different speeds. They found that the particles behaved in a way not seen before, which suggested it might show the "perpetual flow" seen in superfluids like liquid helium.

Day and Dr. Beamish have taken this research a different direction. In an experiment not done before, they cooled the solid helium and manipulated the material another way -- by shearing it elastically. In doing so, they found that the solid behaved in an entirely new and unexpected way -- it became much stiffer at the lowest temperatures.

"The experimental results from the University of Alberta are remarkable," Dr. Chan said. "Namely, Professor Beamish and his student James Day found that the shear modulus of solid helium increases by 20% when it is cooled below 0.25K.

"Furthermore, the temperature dependence of the shear modulus seems to track the period change seen in torsional oscillator. It seems the two phenomena are related and probably have the same mechanical origin.

"This is an important breakthrough since the original discovery," Chan said.

Other physicists around the world are also studying the implications. Through this discovery, Beamish and Day have significantly added to the body of knowledge about the fundamental states of matter allowed by nature.

The researchers report their findings in a paper to be published in the science journal Nature on Wednesday, Dec. 6, 2007.


Story Source:

The above story is based on materials provided by University of Alberta. Note: Materials may be edited for content and length.


Cite This Page:

University of Alberta. "Major Physics Breakthrough In Understanding Supersolidity." ScienceDaily. ScienceDaily, 10 December 2007. <www.sciencedaily.com/releases/2007/12/071205131155.htm>.
University of Alberta. (2007, December 10). Major Physics Breakthrough In Understanding Supersolidity. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2007/12/071205131155.htm
University of Alberta. "Major Physics Breakthrough In Understanding Supersolidity." ScienceDaily. www.sciencedaily.com/releases/2007/12/071205131155.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com
Analysis: NTSB Wants Better Black Boxes

Analysis: NTSB Wants Better Black Boxes

AP (Jan. 22, 2015) NTSB investigators recommended Thursday that long-distance passenger planes carry improved technology to allow them to be found more easily in a crash, as well as include enhanced cockpit recording technology. (Jan. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins