Featured Research

from universities, journals, and other organizations

Keeping At-risk Cells From Developing Cancer

Date:
December 11, 2007
Source:
Johns Hopkins Medical Institutions
Summary:
Researchers at Johns Hopkins have discovered that cancers arising from epigenetic changes -- in this case the inappropriate activation of a normally silent gene -- develop by becoming addicted to certain growth factors. Reporting online in next week's Early Edition of the Proceedings of the National Academies of Sciences, the team shows that blocking this "addiction" can greatly prevent cancer growth.

Researchers at Johns Hopkins have discovered that cancers arising from epigenetic changes -- in this case, the inappropriate activation of a normally silent gene -- develop by becoming addicted to certain growth factors. Reporting online in next week's Early Edition of the Proceedings of the National Academies of Sciences, the team shows that blocking this "addiction" can greatly prevent cancer growth.

Related Articles


"If this is translatable to people, it could be really exciting," says Andrew Feinberg, M.D., professor of medicine, oncology and molecular biology and genetics and director of the Epigenetics Center at Hopkins. "It means we might be able to do something about at-risk cells before cancer develops, and treat these cells biochemically and specifically, rather than using current drugs that are nonspecific and kill everything in their path."

The gene for growth factor IGF-II (insulin-like growth factor two) is one of several in the human genome that is controlled by imprinting - where one of the two copies of the gene is turned off, depending on which parent it came from. Normally, the IGF-II gene from your father is turned on and the one from your mother is turned off. Loss of this imprinting causes the activation of the maternal copy, leading to activation of both copies of the IGF-II gene, which has been associated with a fivefold increased frequency of intestinal tumors in people.

The Hopkins team tested mouse cells with imprinting intact, which have only one copy of IGF-II activated, and compared them to cells that had lost imprinting and have both copies of IGF-II activated. They found that normally imprinted cells respond to normal doses of growth factor and recover within 90 minutes. However, cells that had lost imprinting were activated by the smallest doses and continued to stay activated for more than 120 minutes.

"It's like they were on a hair trigger, which was totally counterintuitive to what we might have predicted," says Andre Levchenko, Ph.D., an assistant professor of biomedical engineering at Hopkins and co-director of the study. "You would expect in cells that have lost imprinting, and therefore have twice the amount of gene product, that it would take higher doses to activate the cell. In fact, the cell becomes hypersensitized while having too much IGF-II around."

The researchers then wondered if blocking the cells' response to IGF-II could block cancer growth in animals. Mice that develop colon cancer were given a drug that specifically blocks a cell's ability to respond to IGF-II. These mice developed 70 percent fewer precancerous lesions than mice without treatment.

"Finding the molecular mechanism behind cancer development allowed us to use a specific drug to actually take care of these risky cells before the animal developed cancer," says Feinberg. "It's making us think about cancer prevention in a whole new way."

The research was funded by the National Institutes of Health and the Swedish Cancer Research Foundation.

Authors on the paper are Atsushi Kaneda, Chiaochun Wang, Raymond Cheong, Winston Timp, Patrick Onyango, Bo Wen, Christine Iacobuzio-Donahue, Andre Levchenko and Feinberg of Hopkins; Rolf Ohlsson of Uppsala University in Uppsala, Sweden; Rita Andraos and Mark Pearson of Novartis Institute of Biomedical Research in Basel, Switzerland; and Alexei Sharov, Dan Longo and Minoru Ko of the National Institute on Aging in Baltimore, Md.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "Keeping At-risk Cells From Developing Cancer." ScienceDaily. ScienceDaily, 11 December 2007. <www.sciencedaily.com/releases/2007/12/071210213042.htm>.
Johns Hopkins Medical Institutions. (2007, December 11). Keeping At-risk Cells From Developing Cancer. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2007/12/071210213042.htm
Johns Hopkins Medical Institutions. "Keeping At-risk Cells From Developing Cancer." ScienceDaily. www.sciencedaily.com/releases/2007/12/071210213042.htm (accessed November 1, 2014).

Share This



More Health & Medicine News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins