Featured Research

from universities, journals, and other organizations

Brain Stem Cells Sensitive To Space Radiation

Date:
December 12, 2007
Source:
University of Florida
Summary:
Studies in mice show identifying medications or physical shielding to protect astronauts from cosmic and solar radiation will be important for the success of human space missions beyond low Earth orbit, according to researchers from the University of Florida, Cold Spring Harbor Laboratory and NASA.

Measures to protect astronauts from health risks caused by space radiation will be important during extended missions to the moon or Mars, say researchers in a paper currently online in Experimental Neurology.

Related Articles


Using a mouse model designed to reveal even slight changes in brain cell populations, scientists found radiation appeared to target a type of stem cell in an area of the brain believed to be important for learning and mood control.

The findings -- from a team of researchers from the Cold Spring Harbor Laboratory, Brookhaven National Laboratory, NASA's Kennedy Space Center and the McKnight Brain Institute of the University of Florida -- suggest that identifying medications or physical shielding to protect astronauts from cosmic and solar radiation will be important for the success of human space missions beyond low Earth orbit.

"Our discovery does not present any adverse issues for the astronaut program because the ground-based dose and application of radiation we used were not comparable to that seen for existing space travel," said Dennis A. Steindler, Ph.D., executive director of UF's McKnight Brain Institute, a professor of neuroscience at the UF College of Medicine and co-investigator in the study. "But the exceptional sensitivity of these neural stem cells suggests that we are going to have to rethink our understanding of stem cell susceptibility to radiation, including cosmic radiation encountered during space travel, as well as radiation doses that accompany different medical procedures."

Stem cells are important because they have the remarkable ability to renew themselves and produce many different cell types.

In this study, Cold Spring Harbor Laboratory scientists developed mice that were genetically engineered with easily identifiable, fluorescent stem cells. The stem cells lose their fluorescence when they transform into neurons, which makes it easier to account for them.

Scientists at the NASA Space Radiation Laboratory at the Brookhaven National Laboratory in Upton, N.Y., administered a single dose of radiation to the mice about equal to the amount astronauts would receive after a three-year space voyage to Mars.

Unexpectedly, researchers found that a special type of stem cell is selectively killed in the hippocampus, according to Grigori Enikolopov, Ph.D., a neurobiologist at Cold Spring Harbor Laboratory who was a co-investigator and the corresponding author of the paper. The cell is described as quiescent -- or quiet -- because even though it is the wellspring that repopulates the brain with new cells, it exists in relative repose while its daughter cells divide and reproduce in great numbers.

"Our findings are surprising because it is assumed that dividing cells are the most vulnerable to radiation -- that is why radiation is used in cancer therapy," Enikolopov said. "These stem cells divide quite rarely and it was unexpected that they would be the most vulnerable to this type of radiation. But at least two thirds of these quiescent cells died. The challenge now is to find something to protect those cells."

Whether certain brain cells are at risk more than others is vital information for scientists planning lengthy lunar expeditions or deep space missions. The President's Commission on Implementation of United States Space Exploration Policy outlined plans to send a human expedition to the moon by 2020. NASA led the mission to land the first unmanned spacecraft on Mars in 1975. More recently, NASA's unmanned Phoenix Mars Lander was launched on Aug. 4 and is expected to land on the red planet on May 25, 2008.

"Space radiation has not been a serious problem for NASA human missions because they have been short in duration or have occurred in low Earth orbit, within the protective magnetic field of the Earth," said Philip Scarpa, M.D., a NASA flight surgeon at NASA's Kennedy Space Center in Florida and a study co-investigator. "However, if we plan to leave low Earth orbit to go back to the moon for long durations or on to Mars, we need to better investigate this issue and assess the risk to the astronauts in order to know whether we need to develop countermeasures such as medications or improved shielding. We currently know very little about the effects of space radiation, especially heavy element cosmic radiation, which is expected on future space missions and was the type of radiation used in this study.

"In addition, we should expect that within each critical organ system, there may be different cell sensitivities that need to be considered when defining space radiation dose limits," Scarpa said.

The finding raises questions about the cognitive and emotional risks associated with radiation exposure during human space exploration missions.

"There is a growing body of evidence that the death of these types of cells is a potential adverse effect of radiation during cancer treatment, but it's not been discussed in terms of space travel," said Jack M. Parent, M.D., a neurologist at the University of Michigan who was not involved in the research. "Radiation has been associated with adverse cognitive effects, which is a potential hazard during space missions. Shielding and other measures to block the effects of radiation have to be strongly considered. The subject certainly deserves more study."

This study was supported by grants from the Ira Hazan Fund and the Seraph Foundation to Enikolopov; grants from the National Institute of Neurological Disorders and Stroke, the National Heart, Lung and Blood Institute, and the McKnight Brain Research Foundation to Steindler; and also by grants to Scarpa and Dennis Chamberland of NASA's Kennedy Space Center from the Florida Space Research Institute and NASA Florida Space Grant Consortium. The National Radiation Health Program provided access to facilities and the National Space Biomedical Research Institute provided logistical support.


Story Source:

The above story is based on materials provided by University of Florida. Note: Materials may be edited for content and length.


Cite This Page:

University of Florida. "Brain Stem Cells Sensitive To Space Radiation." ScienceDaily. ScienceDaily, 12 December 2007. <www.sciencedaily.com/releases/2007/12/071211233500.htm>.
University of Florida. (2007, December 12). Brain Stem Cells Sensitive To Space Radiation. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/2007/12/071211233500.htm
University of Florida. "Brain Stem Cells Sensitive To Space Radiation." ScienceDaily. www.sciencedaily.com/releases/2007/12/071211233500.htm (accessed January 29, 2015).

Share This


More From ScienceDaily



More Space & Time News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Asteroid's Moon Spotted During Earth Flyby

Asteroid's Moon Spotted During Earth Flyby

Rumble (Jan. 27, 2015) Scientists working with NASA&apos;s Deep Space Network antenna at Goldstone, California discovered an unexpected moon while observing asteroid 2004 BL86 during its recent flyby past Earth. Credit to &apos;NASA JPL&apos;. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Mars Rover Opportunity Celebrates 11-Year Anniversary

Mars Rover Opportunity Celebrates 11-Year Anniversary

Rumble (Jan. 26, 2015) Eleven years ago NASA&apos;s Opportunity rover touched down on Mars for what was only supposed to be a 90-day mission. Since then it has traveled 25.9 miles (41.7 kilometers), further than any other off-Earth surface vehicle has ever driven. Credit to &apos;NASA&apos;. Video provided by Rumble
Powered by NewsLook.com
NASA's On Course To Take Pluto's Best Photo Ever

NASA's On Course To Take Pluto's Best Photo Ever

Newsy (Jan. 25, 2015) NASA&apos;s New Horizons probe is en route to snap a picture of Pluto this summer, but making sure it doesn&apos;t miss its one chance to do so starts now. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins