Featured Research

from universities, journals, and other organizations

Muscular Dystrophy: Reprogrammed Human Adult Stem Cells Rescue Diseased Muscle In Mice

Date:
December 14, 2007
Source:
Cell Press
Summary:
Scientists report that adult stem cells isolated from humans with muscular dystrophy can be genetically corrected and used to induce functional improvement when transplanted into a mouse model of the disease. The research represents a significant advance toward the future development of a gene therapy that uses a patient's own cells to treat this devastating muscle-wasting disease.

Scientists report that adult stem cells isolated from humans with muscular dystrophy can be genetically corrected and used to induce functional improvement when transplanted into a mouse model of the disease. The research represents a significant advance toward the future development of a gene therapy that uses a patient's own cells to treat this devastating muscle-wasting disease.

Related Articles


Duchenne muscular dystrophy (DMD) is a hereditary disease caused by a mutation in the gene that codes for a muscle protein called dystrophin. Dystrophin is a key structural protein that helps to keep muscle cells intact. DMD is characterized by a chronic degeneration of skeletal muscle cells that leads to progressive muscle weakness. Although intense research has focused on finding a way to replace the defective dystrophin protein, at this time there is no cure for DMD.

A research group led by Dr. Yvan Torrente from the University of Milan used a combination of cell- and gene-based therapy to isolate adult human stem cells from DMD patients and engineer a genetic modification to correct the dystrophin gene. "Use of the patient's own cells would reduce the risk of implant rejection seen with transplantation of normal muscle-forming cells," explains Dr. Torrente.

Muscle stem cells, identified by expression of the CD133 surface marker, were isolated from normal and dystrophic human blood and skeletal muscle. The isolated human muscle progenitors were implanted into the muscles of mice and were successfully recruited into muscle fibers. As expected, the CD133+ cells isolated from DMD patients expressed the mutated gene for dystrophin and gave rise to muscle cells that resembled muscle fibers in DMD patients.

The researchers then used a sophisticated genetic technique to repair the mutated dystrophin gene in the isolated DMD CD133+ cells so that dystrophin synthesis was restored. Importantly, intramuscular or intra-arterial delivery of the genetically corrected muscle cell progenitors resulted in significant recovery of muscle morphology, function, and dystrophin expression in a mouse model of muscular dystrophy.

"These data demonstrate that genetically engineered blood or muscle-derived CD133+ cells represent a possible tool for future stem cell-based autograft applications in humans with DMD," says Dr. Torrente. The authors caution that significant additional work needs to be done prior to using this technology in humans. "Additional research will substantially enhance our understanding of the mechanisms underlying this effect and may lead to the improvement of gene and cell therapy strategies for DMD."

This research is published by Cell Press in the December issue of Cell Stem Cell.

The researchers include Rachid Benchaouir, Mirella Meregalli, Andrea Farini, Marzia Belicchi, Maurizio Battistelli, and Nereo Bresolin, of the University of Milan, in Milan, Italy; Yvan Torrente of the University of Milan, in Milan, Italy, and UNISTEM, at University of Milan, in Milan, Italy; Giuseppe D'Antona and Roberto Bottinelli, of the Human Physiology Unit, University of Pavia, in Pavia, Italy; Aure΄ lie Goyenvalle, of Genethon-CNRS, in Evry, France; and Luis Garcia, of Genethon-CNRS, in Evry, France.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Muscular Dystrophy: Reprogrammed Human Adult Stem Cells Rescue Diseased Muscle In Mice." ScienceDaily. ScienceDaily, 14 December 2007. <www.sciencedaily.com/releases/2007/12/071212202004.htm>.
Cell Press. (2007, December 14). Muscular Dystrophy: Reprogrammed Human Adult Stem Cells Rescue Diseased Muscle In Mice. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2007/12/071212202004.htm
Cell Press. "Muscular Dystrophy: Reprogrammed Human Adult Stem Cells Rescue Diseased Muscle In Mice." ScienceDaily. www.sciencedaily.com/releases/2007/12/071212202004.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) — The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) — Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) — Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins