Featured Research

from universities, journals, and other organizations

Metal Foam Has A Good Memory

Date:
December 28, 2007
Source:
National Science Foundation
Summary:
A new class of materials known as "magnetic shape-memory foams" has been developed. The foam consists of a nickel-manganese-gallium alloy whose structure resembles a piece of Swiss cheese with small voids of space between thin, curvy "struts" of material.

The porous nature of nickel-manganese-gallium alloy gives it "shape-memory" properties. The material lengthens, or strains, up to 10 percent when subjected to a magnetic field. The NSF-funded researchers believe the porous alloy has great potential for uses that require light weight and a large strain, such as space and automotive applications and tiny motion control devices or biomedical pumps with no moving parts.
Credit: P. Müllner, M. Chmelius and S. Donovan, Boise State University, and D. Dunand and Y. Boonyoungmaneerat, Northwestern University

In the world of commercial materials, lighter and cheaper is usually better, especially when those attributes are coupled with superior strength and special properties, such as a material's ability to remember its original shape after it's been deformed by a physical or magnetic force.

Related Articles


A new class of materials known as "magnetic shape-memory foams" has been developed by two research teams headed by Peter Müllner at Boise State University and David Dunand at Northwestern University.

The foam consists of a nickel-manganese-gallium alloy whose structure resembles a piece of Swiss cheese with small voids of space between thin, curvy "struts" of material. The struts have a bamboo-like grain structure that can lengthen, or strain, up to 10 percent when a magnetic field is applied. Strain is the degree to which a material deforms under load. In this instance, the force came from a magnetic field rather a physical load. Force from magnetic fields can be exerted over long range, making them advantageous for many applications. The alloy material retains its new shape when the field is turned off, but the magnetically sensitive atomic structure returns to its original structure if the field is rotated 90 degrees--a phenomenon called "magnetic shape-memory."

Making large single crystals of the alloy material is too slow and expensive to be commercially viable -- one of the reasons why gems are so costly -- so the researchers make polycrystalline alloys, which contain many small crystals or grains. Traditional polycrystalline materials are not porous and exhibit near zero strains due to mechanical constraints at the boundaries between each grain.

In contrast, a single crystal exhibits a large strain as there are no internal boundaries. By introducing voids into the polycrystalline alloy, the researchers have made a porous material that has less internal mechanical constraint and exhibits a reasonably large degree of strain.

The researchers created the new material by pouring molten alloy into a piece of porous sodium aluminate salt. Once the material cooled, they leached out the salt with acid, leaving behind large voids. The researchers then exposed the porous alloy to a rotating magnetic field. The level of strain achieved after each of the over 10 million rotations is consistent with the best currently used magnetic actuators, and Müllner and Dunand expect to significantly improve the strain when they have further optimized the foam's architecture.

"The base alloy material was previously known, but it wasn't very effective for shape-memory applications," Dunand said. "The porous nature of the material amplifies the shape-change effect, making it a good candidate for tiny motion control devices or biomedical pumps without moving parts."

NSF Program Director Harsh Deep Chopra agrees. "It's the first foam to exhibit magnetic shape memory - it has great potential for uses that require a large strain and light weight such as space applications and automobiles. These materials are able to do more with less material given their foamy structure and provide a sustainable approach to materials development."

The work was funded by the National Science Foundation.


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "Metal Foam Has A Good Memory." ScienceDaily. ScienceDaily, 28 December 2007. <www.sciencedaily.com/releases/2007/12/071220111513.htm>.
National Science Foundation. (2007, December 28). Metal Foam Has A Good Memory. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2007/12/071220111513.htm
National Science Foundation. "Metal Foam Has A Good Memory." ScienceDaily. www.sciencedaily.com/releases/2007/12/071220111513.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins