Featured Research

from universities, journals, and other organizations

Scientists Restore Walking In Mice After Spinal Cord Injury

Date:
January 7, 2008
Source:
University of California - Los Angeles
Summary:
The nervous system can reorganize itself after spinal cord injury and use new pathways to restore the cellular communication required for walking, scientists have shown. The discovery could lead to new therapies for the estimated 250,000 Americans who suffer from paralysis following traumatic spinal cord injuries.

For the first time, a UCLA study shows that the central nervous system can reorganize itself and follow new pathways to restore the cellular communication required for movement after spinal cord injury.
Credit: iStockphoto/Mads Abildgaard

Spinal cord damage blocks the routes that the brain uses to send messages to the nerve cells that control walking. Until now, doctors believed that the only way for injured patients to walk again was to re-grow the long nerve highways that link the brain and base of the spinal cord. For the first time, a UCLA study shows that the central nervous system can reorganize itself and follow new pathways to restore the cellular communication required for movement.

The discovery could lead to new therapies for the estimated 250,000 Americans who suffer from traumatic spinal cord injuries. An additional 10,000 cases occur each year, according to the Christopher and Dana Reeve Foundation, which helped fund the UCLA study.

"Imagine the long nerve fibers that run between the cells in the brain and lower spinal cord as major freeways," explained Dr. Michael Sofroniew, lead author and professor of neurobiology at the David Geffen School of Medicine at UCLA. "When there's a traffic accident on the freeway, what do drivers do? They take shorter surface streets. These detours aren't as fast or direct, but still allow drivers to reach their destination.

"We saw something similar in our research," he added. "When spinal cord damage blocked direct signals from the brain, under certain conditions the messages were able to make detours around the injury. The message would follow a series of shorter connections to deliver the brain's command to move the legs."

Using a mouse model, Sofroniew and his colleagues blocked half of the long nerve fibers in different places and at different times on each side of the spinal cord. They left untouched the spinal cord's center, which contains a connected series of shorter nerve pathways. The latter convey information over short distances up and down the spinal cord.

What they discovered surprised them.

"We were excited to see that most of the mice regained the ability to control their legs within eight weeks," said Sofroniew. "They walked more slowly and less confidently than before their injury, but still recovered mobility."

When the researchers blocked the short nerve pathways in the center of the spinal cord, the regained function disappeared, returning the animals' paralysis. This step confirmed that the nervous system had rerouted messages from the brain to the spinal cord via the shorter pathways, and that these nerve cells were critical to the animal's recovery.

"When I was a medical student, my professors taught that the brain and spinal cord were hard-wired at birth and could not adapt to damage. Severe injury to the spinal cord meant permanent paralysis," said Sofroniew.

"This pessimistic view has changed over my lifetime, and our findings add to a growing body of research showing that the nervous system can reorganize after injury," he added. "What we demonstrate here is that the body can use alternate nerve pathways to deliver instructions that control walking."

The UCLA team's next step will be to learn how to entice nerve cells in the spinal cord to grow and form new pathways that connect across or around the injury site, enabling the brain to direct these cells. If the researchers succeed, the findings could lead to the development of new strategies for restoring mobility following spinal cord injury.

"Our study has identified cells that we can target to try to restore communication between the brain and spinal cord," explained Sofroniew. "If we can use existing nerve connections instead of attempting to rebuild the nervous system the way it existed before injury, our job of repairing spinal cord damage will become much easier."

Spinal cord injury involves damage to the nerves enclosed within the spinal canal; most injuries result from trauma to the vertebral column. This affects the brain's ability to send and receive messages below the injury site to the systems that control breathing, movement and digestion. Patients generally experience greater paralysis when injury strikes higher in the spinal column.

The full research is published in the January edition of Nature Medicine. Sofroniew's coauthors included Gregoire Courtine, Dr. Bingbing Song, Roland Roy, Hui Zhong, Julia Herrmann, Dr. Yan Ao, Jingwei Qi and Reggie Edgerton, all of UCLA

The UCLA study was supported by grants from the National Institute of Neurological Disease and Stroke, the Adelson Medical Foundation, the Roman Reed Spinal Cord Injury Research Fund of California and the Christopher and Dana Reeve Foundation.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Los Angeles. "Scientists Restore Walking In Mice After Spinal Cord Injury." ScienceDaily. ScienceDaily, 7 January 2008. <www.sciencedaily.com/releases/2008/01/080106193147.htm>.
University of California - Los Angeles. (2008, January 7). Scientists Restore Walking In Mice After Spinal Cord Injury. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2008/01/080106193147.htm
University of California - Los Angeles. "Scientists Restore Walking In Mice After Spinal Cord Injury." ScienceDaily. www.sciencedaily.com/releases/2008/01/080106193147.htm (accessed August 1, 2014).

Share This




More Health & Medicine News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Quintuplets Head Home

Texas Quintuplets Head Home

Reuters - US Online Video (Aug. 1, 2014) After four months in the hospital, the first quintuplets to be born at Baylor University Medical Center head home. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Ebola Patient Coming to U.S. for Treatment

Ebola Patient Coming to U.S. for Treatment

Reuters - US Online Video (Aug. 1, 2014) A U.S. aid worker infected with Ebola while working in West Africa will be treated in a high security ward at Emory University in Atlanta. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Ebola Vaccine Might Be Coming, But Where's It Been?

Ebola Vaccine Might Be Coming, But Where's It Been?

Newsy (Aug. 1, 2014) Health officials are working to fast-track a vaccine — the West-African Ebola outbreak has killed more than 700. But why didn't we already have one? Video provided by Newsy
Powered by NewsLook.com
Study Links Certain Birth Control Pills To Breast Cancer

Study Links Certain Birth Control Pills To Breast Cancer

Newsy (Aug. 1, 2014) Previous studies have made the link between birth control and breast cancer, but the latest makes the link to high-estrogen oral contraceptives. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins