Featured Research

from universities, journals, and other organizations

Will Intensive Forest Practices Impact Water Quality?

Date:
January 8, 2008
Source:
Soil Science Society of America
Summary:
In order to increase productivity, forest practices have become more intense in recent decades. Forest fertilization increased by 800% in the southeastern United States from 1990 to 1999, and the total acreage fertilized in the Southeast exceeds the forest area fertilized in the rest of the world. This has generated concern that intensive forest practices, including fertilization, may negatively impact water quality in forest streams.

In order to increase productivity, forest practices have become more intense in recent decades. Forest fertilization increased by 800% in the southeastern United States from 1990 to 1999, and the total acreage fertilized in the Southeast exceeds the forest area fertilized in the rest of the world. This has generated concern that intensive forest practices, including fertilization, may negatively impact water quality in forest streams.

Related Articles


In a recent study, hydrologists at Stephen F. Austin State University (SFASU) investigated the effects of intensive forestry on water quality in the timber-producing region of eastern Texas.

Analysis at several small and large watersheds began in 1999. In 2002, treatment watersheds were clearcut harvested and herbicides applied to control competing vegetation. One subset of clearcut watersheds was fertilized with an aerial application of diammonium phosphate while another subset was not. Unfertilized streamside buffers of at least 15 m, consistent with Texas best management practices (BMPs), were retained on all intermittent and perennial streams.

Clearcutting with herbicide site preparation alone resulted in slight increases of nitrogen on small watersheds but not on the large one. Fertilization resulted in increased losses of nitrogen and phosphorus from both the large and small watersheds. The overall magnitude of these increases was small, with 1 to 7% of the applied nitrogen and 1 to 2% of the applied phosphorus leaving the watersheds in runoff waters. Rainfall nitrogen inputs were higher than stormflow losses of nitrogen, indicating that even after fertilization at a rate almost 30 times greater than rainfall input, these watersheds were still serving as nitrogen sinks. Peak runoff concentrations were well below published water quality standards.

Clearcutting with intensive forest practices using BMPs did not dramatically affect runoff concentrations and losses of nutrients from these watersheds. Nutrient export was a small fraction of what was applied, and most of the loss occurred within the first few storms after treatment.

Forest fertilization usually has a small, short-lived impact on nutrient losses. This is in part due to the relative infrequency of fertilization (1-2 applications per 25-30 year stand rotation) and lower inherent fertility of most forest soils. In addition, streamside buffers help stabilize stream channels and prevent direct application of fertilizers to streams, thus reducing potential water quality impacts. Finally, rapid herbaceous and woody vegetation regrowth and subsequent nutrient uptake in the warm, humid Southeast reduced the amount of nutrients available for movement offsite.

This study was funded by SFASU and the National Council for Air and Stream Improvement. Temple-Inland Forest Products Corporation also provided funding and the research sites. The research was presented in Ft. Worth, TX at the 2005 Society of American Foresters annual meeting and the 2006 annual meeting of the North American Benthological Society in Anchorage, AK.

Full results are published in the January-February 2008 issue of the Journal of Environmental Quality.



Story Source:

The above story is based on materials provided by Soil Science Society of America. Note: Materials may be edited for content and length.


Cite This Page:

Soil Science Society of America. "Will Intensive Forest Practices Impact Water Quality?." ScienceDaily. ScienceDaily, 8 January 2008. <www.sciencedaily.com/releases/2008/01/080107115136.htm>.
Soil Science Society of America. (2008, January 8). Will Intensive Forest Practices Impact Water Quality?. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2008/01/080107115136.htm
Soil Science Society of America. "Will Intensive Forest Practices Impact Water Quality?." ScienceDaily. www.sciencedaily.com/releases/2008/01/080107115136.htm (accessed October 24, 2014).

Share This



More Earth & Climate News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
E.U. Leaders Agree To 40% CO2 Emissions Cut By 2030

E.U. Leaders Agree To 40% CO2 Emissions Cut By 2030

Newsy (Oct. 23, 2014) The latest E.U. emissions deal calls for a 40 percent greenhouse gas cut, which leaders say sets Europe up to lead in climate negotiations next year. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins