Featured Research

from universities, journals, and other organizations

Method Developed For Key Micromechanical Property

Date:
January 11, 2008
Source:
National Institute of Standards and Technology
Summary:
Engineers and researchers designing and building new microelectromechanical systems can benefit from a new test method developed at the National Institute of Standards and Technology to measure a key mechanical property of such systems: elasticity. The new method determines the "Young's modulus" of thin films not only for MEMS devices but also for semiconductor devices in integrated circuits.

Engineers and researchers designing and building new microelectromechanical systems (MEMS) can benefit from a new test method developed at the National Institute of Standards and Technology (NIST) to measure a key mechanical property of such systems: elasticity. The new method determines the "Young's modulus" of thin films not only for MEMS devices but also for semiconductor devices in integrated circuits.

Related Articles


Since 1727, scientists and engineers have used Young's modulus as a measure of the stiffness of a given material. Defined as the ratio of stress (such as the force per unit area pushing on both ends of a beam) to strain (the amount the beam is deflected), Young's modulus allows the behavior of a material under load to be calculated. Young's modulus predicts the length a wire will stretch under tension or the amount of compression that will buckle a thin film.

A standard method to determine this important parameter--a necessity to ensure that measurements of Young's modulus made at different locations are comparable--has eluded those who design, manufacture and test MEMS devices, particularly in the semiconductor industry.

A team at NIST recently led the effort to develop SEMI Standard MS4-1107, "Test Method for Young's Modulus Measurements of Thin, Reflecting Films Based on the Frequency of Beams in Resonance." The new standard applies to thin films (such as those found in MEMS materials) that can be imaged using an optical vibrometer or comparable instrument for non-contact measurements of surface motion. In particular, measurements are obtained from resonating beams--comprised of the thin film layer--that oscillate out-of-plane.

The frequency at which the maximum amplitude (or velocity) of vibration is achieved is a resonance frequency, which is used to calculate the Young's modulus of the thin film layer. The group also developed a special Web-based "MEMS calculator" that can be used to determine specific thin film properties from data taken with an optical interferometer.

Knowledge of the Young's modulus values and the residual strain (using ASTM International Standard E 2245) for thin film layers can lead to calculations of residual stress, which in turn, enable semiconductor manufacturers to develop circuit design strategies, fabrication systems and post-processing methods that could increase fabrication yield by reducing the frequency of failures from electromigration, stress migration and delamination.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "Method Developed For Key Micromechanical Property." ScienceDaily. ScienceDaily, 11 January 2008. <www.sciencedaily.com/releases/2008/01/080109173747.htm>.
National Institute of Standards and Technology. (2008, January 11). Method Developed For Key Micromechanical Property. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2008/01/080109173747.htm
National Institute of Standards and Technology. "Method Developed For Key Micromechanical Property." ScienceDaily. www.sciencedaily.com/releases/2008/01/080109173747.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Who Will Failed Nuclear Talks Hurt Most?

Who Will Failed Nuclear Talks Hurt Most?

Reuters - Business Video Online (Nov. 25, 2014) With no immediate prospect of sanctions relief for Iran, and no solid progress in negotiations with the West over the country's nuclear programme, Ciara Lee asks why talks have still not produced results and what a resolution would mean for both parties. Video provided by Reuters
Powered by NewsLook.com
Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Reuters - Innovations Video Online (Nov. 25, 2014) A virtual flying enthusiast converts parts of a written-off Airbus aircraft into a working flight simulator in his northern Slovenian home. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins