Featured Research

from universities, journals, and other organizations

Seismic Images Show Dinosaur-killing Meteor Made Bigger Splash

Date:
January 24, 2008
Source:
University of Texas at Austin
Summary:
The most detailed 3-D seismic images yet of the Chicxulub impact crater may modify a theory explaining the "KT Extinction Event" that wiped out most life on Earth, including the dinosaurs. According to new research the asteroid landed in deeper water than previously assumed and therefore released about 6.5 times more water vapor into the atmosphere, possibly making it deadlier by altering climate and generating acid rain.

A new study reveals that the asteroid that killed the dinosaurs landed in deeper water than once thought, perhaps explaining why its effects were so severe. Inset: 1996 (black) and 2005 (red) seismic surveys are shown over the Bouguer gravity anomaly map showing the buried Chicxulub impact crater.
Credit: Map from Nature Geoscience / Illustration courtesy of NASA

The most detailed three-dimensional seismic images yet of the Chicxulub crater, a mostly submerged and buried impact crater on the Mexico coast, may modify a theory explaining the extinction of 70 percent of life on Earth 65 million years ago.

Related Articles


The Chicxulub crater was formed when an asteroid struck on the coast of the Yucatan Peninsula. Most scientists agree the impact played a major role in the "KT Extinction Event" that caused the extinction of most life on Earth, including the dinosaurs.

According to Sean Gulick, a research scientist at the Institute for Geophysics at The University of Texas at Austin's Jackson School of Geosciences and principal investigator for the project, the new images reveal the asteroid landed in deeper water than previously assumed and therefore released about 6.5 times more water vapor into the atmosphere.

The impact site also contained sulfur-rich sediments called evaporites, which would have reacted with water vapor to produce sulfate aerosols. According to Gulick, an increase in the atmospheric concentration of the compounds could have made the impact deadlier in two ways: by altering climate (sulfate aerosols in the upper atmosphere can have a cooling effect) and by generating acid rain (water vapor can help to flush the lower atmosphere of sulfate aerosols, causing acid rain). Earlier studies had suggested both effects might result from the impact, but to a lesser degree.

"The greater amount of water vapor and consequent potential increase in sulfate aerosols needs to be taken into account for models of extinction mechanisms," says Gulick.

An increase in acid rain might help explain why reef and surface dwelling ocean creatures were affected along with large vertebrates on land and in the sea. As it fell on the water, acid rain could have turned the oceans more acidic. There is some evidence that marine organisms more resistant to a range of pH survived while those more sensitive did not.

Gulick says the mass extinction event was probably not caused by just one mechanism, but rather a combination of environmental changes acting on different time scales, in different locations. For example, many large land animals might have been baked to death within hours or days of the impact as ejected material fell from the sky, heating the atmosphere and setting off firestorms. More gradual changes in climate and acidity might have had a larger impact in the oceans.

Gulick and collaborators originally set out to learn more about the trajectory of the asteroid. They had hoped the crater's structure in the subsurface would hold a tell-tale signature. Instead, the structure seemed to be most strongly shaped by the pre-impact conditions of the target site.

"We discovered that the shallow structure of the crater was determined much more by what the impact site was like before impact than by the trajectory of the impactor," says Gulick.

If scientists can determine the trajectory, it will tell them where to look for the biggest environmental consequences of impact, because most of the hazardous, shock-heated and fast-moving material would have been thrown out of the crater downrange from the impact.

Researchers at Imperial College in London are already using computer models to search for possible signatures in impact craters that could indicate trajectory regardless of the initial surface conditions at the impact site.

"As someone who simulates impact events using computers, this work provides valuable new constraints on both the pre-impact target structure and the final geometry of the cratered crust at Chicxulub," says Gareth Collins, a research fellow at Imperial College.

The study "Importance of pre-impact crustal structure for the asymmetry of the Chicxulub impact crater" appears in the February 2008 print edition of the journal Nature Geoscience.

Collaborators on the project included Gail Christeson of the Institute for Geophysics, Penny Barton at the University of Cambridge, Joanna Morgan and Mike Warner at Imperial College, and several graduate students.


Story Source:

The above story is based on materials provided by University of Texas at Austin. Note: Materials may be edited for content and length.


Cite This Page:

University of Texas at Austin. "Seismic Images Show Dinosaur-killing Meteor Made Bigger Splash." ScienceDaily. ScienceDaily, 24 January 2008. <www.sciencedaily.com/releases/2008/01/080123125543.htm>.
University of Texas at Austin. (2008, January 24). Seismic Images Show Dinosaur-killing Meteor Made Bigger Splash. ScienceDaily. Retrieved April 21, 2015 from www.sciencedaily.com/releases/2008/01/080123125543.htm
University of Texas at Austin. "Seismic Images Show Dinosaur-killing Meteor Made Bigger Splash." ScienceDaily. www.sciencedaily.com/releases/2008/01/080123125543.htm (accessed April 21, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Tuesday, April 21, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Going Ape: Sierra Leone Chimpanzees Hail Ebola Retreat

Going Ape: Sierra Leone Chimpanzees Hail Ebola Retreat

AFP (Apr. 21, 2015) As money runs out at Tacugama Chimpanzee Sanctuary in Sierra Leone, around 85 chimps are facing homelessness. The centre closed when the Ebola epidemic was ravaging the country but now that closure is beginning to look permanent. Video provided by AFP
Powered by NewsLook.com
Wild Weather Lashes Sydney Region

Wild Weather Lashes Sydney Region

AFP (Apr. 21, 2015) Sydney and surrounding areas are lashed by wild weather with trees felled, power cuts hitting thousands of homes and sand drifts sweeping inland off the iconic Bondi beach. Duration: 00:50 Video provided by AFP
Powered by NewsLook.com
Deepwater And Dolphins: The Oil Spill's Impact 5 Years On

Deepwater And Dolphins: The Oil Spill's Impact 5 Years On

Newsy (Apr. 20, 2015) Five years on, the possible environmental impact of the Deepwater Horizon spill includes a sustained die-off of bottlenose dolphins, among others. Video provided by Newsy
Powered by NewsLook.com
Pee-Power Toilet to Light Up Disaster Zones

Pee-Power Toilet to Light Up Disaster Zones

Reuters - Innovations Video Online (Apr. 20, 2015) Students and staff are being asked to use a prototype urinal to &apos;donate&apos; urine to fuel microbial fuel cell (MFC) stacks that generate electricity to power lighting. The developers hope the pee-power technology will light toilet cubicles in refugee camps, where women are often at risk of assault in poorly lit sanitation areas. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins