Featured Research

from universities, journals, and other organizations

Birds, Bats And Insects Hold Secrets For Aerospace Engineers

Date:
February 9, 2008
Source:
University of Michigan
Summary:
Natural flyers like birds, bats and insects outperform man-made aircraft in aerobatics and efficiency. Engineers are studying these animals as a step toward designing flapping-wing planes with wingspans smaller than a deck of playing cards.

Flapping flight is inherently unsteady, but that's why it works so well. Birds, bats and insects fly in a messy environment full of gusts traveling at speeds similar to their own. Yet they can react almost instantaneously and adapt with their flexible wings.
Credit: iStockphoto/Steve Byland

Natural flyers like birds, bats and insects outperform man-made aircraft in aerobatics and efficiency. University of Michigan engineers are studying these animals as a step toward designing flapping-wing planes with wingspans smaller than a deck of playing cards.

A Blackbird jet flying nearly 2,000 miles per hour covers 32 body lengths per second. But a common pigeon flying at 50 miles per hour covers 75. The roll rate of the aerobatic A-4 Skyhawk plane is about 720 degrees per second. The roll rate of a barn swallow exceeds 5,000 degrees per second.

Select military aircraft can withstand gravitational forces of 8-10 G. Many birds routinely experience positive G-forces greater than 10 G and up to 14 G.

“Natural flyers obviously have some highly varied mechanical properties that we really have not incorporated in engineering,” said Wei Shyy, chair of the Aerospace Engineering department and an author of the new book “The Aerodynamics of Low Reynolds Number Flyers.”

“They’re not only lighter, but also have much more adaptive structures as well as capabilities of integrating aerodynamics with wing and body shapes, which change all the time,” Shyy said. “Natural flyers have outstanding capabilities to remain airborne through wind gusts, rain, and snow.” Shyy photographs birds to help him understand their aerodynamics.

Pressure generated during flight cause the flapping wings to deform, he explained. In turn, the deformed wing tells the air that the wing shape is different than it appears in still air. If appropriately handled, this phenomenon can delay stall, enhance stability and increase thrust.

Flapping flight is inherently unsteady, but that’s why it works so well. Birds, bats and insects fly in a messy environment full of gusts traveling at speeds similar to their own. Yet they can react almost instantaneously and adapt with their flexible wings.

Shyy and his colleagues have several grants from the Air Force totaling more than $1 million a year to research small flapping wing aircraft. Such aircraft would fly slower than their fixed wing counterparts, and more importantly, they would be able to hover and possibly perch in order to monitor the environment or a hostile area. Shyy’s current focus is on the aerodynamics of flexible wings related to micro air vehicles with wingspans between 1 and 3 inches.

“These days, if you want to design a flapping wing vehicle, you could build one with trial and error, but in a controlled environment with no wind gusts,” Shyy said. “We are trying to figure out how to design a vehicle that can perform a mission in an uncertain environment. When the wind blows, how do they stay on course?”

A dragonfly, Shyy says, has remarkable resilience to wind, considering how light it is. The professor chalks that up to its wing structure and flight control. But the details are still questions.

“We’re really just at the beginning of this,” Shyy said.

Shyy is the Clarence L. "Kelly" Johnson Collegiate Professor of Aerospace Engineering. Other authors of the book, “Aerodynamics of Low Reynolds Number Flyers” are: U-M research scientists Yongsheng Lian, Jian Tang and Dragos Viieru, and Hao Liu, professor of Biomechanical Engineering at Chiba University in Japan.

Other collaborators on this research include professors Luis Bernal, Carlos Cesnik and Peretz Friedmann of the University of Michigan; Hao Liu of Chiba University in Japan; Peter Ifju, Rick Lind and Larry Ukeiley of University of Florida, and Sean Humbert of University of Maryland.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Cite This Page:

University of Michigan. "Birds, Bats And Insects Hold Secrets For Aerospace Engineers." ScienceDaily. ScienceDaily, 9 February 2008. <www.sciencedaily.com/releases/2008/02/080204172203.htm>.
University of Michigan. (2008, February 9). Birds, Bats And Insects Hold Secrets For Aerospace Engineers. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2008/02/080204172203.htm
University of Michigan. "Birds, Bats And Insects Hold Secrets For Aerospace Engineers." ScienceDaily. www.sciencedaily.com/releases/2008/02/080204172203.htm (accessed July 30, 2014).

Share This




More Matter & Energy News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
China's Drone King Says the Revolution Depends on Regulators

China's Drone King Says the Revolution Depends on Regulators

Reuters - Business Video Online (July 30, 2014) Comparing his current crop of drones to early personal computers, DJI founder Frank Wang says the industry is poised for a growth surge - assuming regulators in more markets clear it for takeoff. Jon Gordon reports. Video provided by Reuters
Powered by NewsLook.com
3Doodler Bring 3-D Printing to Your Hand

3Doodler Bring 3-D Printing to Your Hand

AP (July 30, 2014) 3-D printing is a cool technology, but it's not exactly a hands-on way to make things. Enter the 3Doodler: the pen that turns you into the 3-D printer. AP technology writer Peter Svensson takes a closer look. (July 30) Video provided by AP
Powered by NewsLook.com
Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins