Featured Research

from universities, journals, and other organizations

Worldwide-distributed Clone Of Bacteria Responsible For Legionnaire's Disease Identified

Date:
February 12, 2008
Source:
Cold Spring Harbor Laboratory
Summary:
New insights have been made into Legionella pneumophila, the bacteria responsible for most cases of Legionnaires' disease. A new report investigates the genetic background of L. pneumophila, provides clues to the evolution and emergence of this pathogen, and describes the identification of a worldwide-distributed epidemic clone.

A new study describes new insights into Legionella pneumophila, the bacteria responsible for most cases of Legionnaires' disease. This report investigates the genetic background of L. pneumophila, provides clues to the evolution and emergence of this pathogen, and describes the identification of a worldwide-distributed epidemic clone.

Legionnaire's disease is characterized by severe pneumonia, afflicting the elderly and individuals with weakened immune responses in particular. While L. pneumophila, a genetically diverse species and one of many Legionella species, is common in natural and drinking water supplies, the majority of Legionnaire's disease cases worldwide (approximately 84%) are caused by a single serogroup, L. pneumophila Sg1. Recent work has suggested that even though Sg1 is responsible for most clinical cases, this serogroup accounts for only about 30% of environmental Legionella.

As the prevalence of Sg1 in Legionnaire's disease cases does not appear to be a result of environmental predominance, the frequent occurrence of Sg1 in disease is likely due to higher virulence. In this study, researchers led by Dr. Carmen Buchrieser of the Institut Pasteur conducted a comparative genomics analysis to gain insight into the basis for the higher virulence of Sg1.

To compare Sg1 and other Legionella isolates, the researchers constructed DNA-arrays containing genes known to be variable in L. pneumophila strains, including a set of known and potential virulence genes. "We screened the gene content of 217 L. pneumophila strains and 32 other Legionella (non-pneumophila) strains that were isolated from humans and the environment," describes Buchrieser. "We discovered core virulence- and eukaryotic-like genes are highly conserved, indicating strong selection pressures for their preservation."

Importantly, a cluster of lipopolysaccharide (LPS) biosynthesis genes was found to be common in Sg1, even in different genetic backgrounds. This suggests that the gene cluster could be transferred horizontally between strains. "The LPS of Sg1 itself may confer to Sg1 strains the high prevalence in human disease," explains Buchrieser. Variation in LPS, a component of the cell wall normally recognized by the innate immune system, could allow the bacteria to evade host immune responses.

Most significantly, this study identified a specific clone of Sg1 that is present in both sporadic cases and outbreaks worldwide. "The identification of this clone opens exciting possibilities of research to find out which genes contribute to improved interaction with the host, or to improved fitness in the environment, or to both," describes Buchrieser.

Buchrieser cautions that there may be other genetic factors involved in the emergence of an epidemic strain. "Although the strains carrying this LPS cluster seem to be particularly adapted for causing human disease, additional genetic factors present in the genome may have allowed a particular clone of Sg1 to evolve within this highly diverse species."

In addition to gaining insight into the genetic basis for L. pneumophila Sg1 virulence, Buchrieser suggests this work may lead to new methods of detection. "The findings of this comparative genomics approach will be invaluable for the development of novel tools to rapidly detect Legionella-associated risk factors in water distribution systems of hospitals and other potential sites for Legionella infection."

Scientists from the Institut Pasteur/Centre National de la Recherche Scientifique (CNRS) (Paris, France) and the Centre National de Référence des Legionella/Institut National de la Santé et de la Recherche Médicale (INSERM) (Lyon, France) contributed to this study.

This work was supported by grants from the Institut Pasteur, the Centre National de la Recherche Scientifique (CNRS), the Agence française de sécurité sanitaire de l'environnement et du travail (Afsset), and the Israeli-French Research Networks Program in Bioinformatics.

The manuscript will be published online ahead of print on Wednesday, February 6, 2008. Its full citation is as follows: Cazalet, C., Jarraud, S., Ghavi-Helm, Y., Kunst, F., Glaser, P., Etienne, J., and Buchrieser. C. Multi-genome analysis identifies a worldwide distributed epidemic Legionella pneumophila clone that emerged within a highly diverse species. Genome Res. doi:10.1101/gr.7229808.

 


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Cold Spring Harbor Laboratory. "Worldwide-distributed Clone Of Bacteria Responsible For Legionnaire's Disease Identified." ScienceDaily. ScienceDaily, 12 February 2008. <www.sciencedaily.com/releases/2008/02/080205171758.htm>.
Cold Spring Harbor Laboratory. (2008, February 12). Worldwide-distributed Clone Of Bacteria Responsible For Legionnaire's Disease Identified. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2008/02/080205171758.htm
Cold Spring Harbor Laboratory. "Worldwide-distributed Clone Of Bacteria Responsible For Legionnaire's Disease Identified." ScienceDaily. www.sciencedaily.com/releases/2008/02/080205171758.htm (accessed April 24, 2014).

Share This



More Plants & Animals News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Fungus Killing Bats, Spreading in US

Deadly Fungus Killing Bats, Spreading in US

AP (Apr. 24, 2014) — A disease that has killed more than six million cave-dwelling bats in the United States is on the move and wildlife biologists are worried. White Nose Syndrome, discovered in New York in 2006, has now spread to 25 states. (April 24) Video provided by AP
Powered by NewsLook.com
Blood From World's Oldest Woman Suggests Life Limit

Blood From World's Oldest Woman Suggests Life Limit

Newsy (Apr. 24, 2014) — Scientists say for the extremely elderly, their stem cells might reach a state of exhaustion. This could limit one's life span. Video provided by Newsy
Powered by NewsLook.com
Raw: Kangaroo Rescued from Swimming Pool

Raw: Kangaroo Rescued from Swimming Pool

AP (Apr. 24, 2014) — A kangaroo was saved from drowning in a backyard suburban swimming pool in Australia's Victoria state on Thursday. Australian broadcaster Channel 7 showed footage of the kangaroo struggling to get out of the pool. (April 24) Video provided by AP
Powered by NewsLook.com
Could Marijuana Use Lead To Serious Heart Problems?

Could Marijuana Use Lead To Serious Heart Problems?

Newsy (Apr. 24, 2014) — A new study says marijuana use could lead to serious heart-related complications. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins