Featured Research

from universities, journals, and other organizations

Ancient Proteins Rebuilt To Reveal Primordial Earth's Temperature

Date:
February 16, 2008
Source:
University of Florida
Summary:
Researchers reconstruct proteins from ancient bacteria to measure the Earth's temperature over the ages. The scientists determined that the Earth endured a massive cooling period between 500 million and 3.5 billion years ago. The team wanted to measure Earth's temperature billions of years ago to learn more about life on Earth during the Precambrian period. But instead of taking the traditional route -- analyzing rock formations or measuring isotopes in fossils -- they opted to do what they knew best: protein reconstruction.

Using the genetic equivalent of an ancient thermometer, a team of scientists has determined that the Earth endured a massive cooling period between 500 million and 3.5 billion years ago.

Reporting Feb. 7 in the journal Nature, researchers from the University of Florida, the Foundation for Applied Molecular Evolution and the biotechnology company DNA2.0 describe how they reconstructed proteins from ancient bacteria to measure the Earth's temperature over the ages.

"By studying proteins encoded by these primordial genes, we are able to infer information about the environmental conditions of the early Earth," said Eric Gaucher, Ph.D., president of scientific research at the Foundation for Applied Molecular Evolution in Gainesville and the study's lead scientist. "Genes evolve to adapt to the environmental conditions in which an organism lives. Resurrecting these since long-extinct genes gives us the opportunity to analyze and dissect the ancient surroundings that have been recorded in the gene sequence. The genes essentially behave as dynamic fossils."

The team wanted to measure Earth's temperature billions of years ago to learn more about life on Earth during the Precambrian period. But instead of taking the traditional route -- analyzing rock formations or measuring isotopes in fossils -- they opted to do what they knew best: protein reconstruction.

"We've analyzed the temperature stability of proteins inside organisms that were around during those times," said Omjoy Ganesh, Ph.D., a structural biologist in the UF College of Medicine's department of biochemistry and molecular biology. "The ancient oceans were warmer. For ocean organisms living during that time to survive, the proteins within them had to be stable at high temperatures."

After scanning multiple databases, the scientists struck gold with a protein called elongation factor, which helps bacteria string together amino acids to form other proteins. Each bacterial species has a slightly different form of the protein: Bacteria that live in warmer environments have resilient elongation factors, which can withstand high temperatures without melting. The opposite is true for bacteria that live in cold environments.

Armed with information about when bacterial species evolved, the scientists rebuilt 31 elongation factors from 16 ancient species. By comparing the heat sensitivity of the reconstructed proteins, they were able to discern how Earth's temperature changed over the ages.

"Although the concept of ancestral gene resurrection was proposed more than 40 years ago, the development of efficient gene synthesis has only recently enabled the synthesis of ancestral genes," said Sridhar Govindarajan, Ph.D., co-author of the paper and vice president of informatics at DNA2.0, a California-based company that constructed the genes. "Gene synthesis allows for a direct route from a calculated gene sequence to a protein that can be tested for function in the laboratory."

Almost all bacteria are related if you go back far enough, the scientists said. Even organisms that like extreme heat are related to organisms that are very sensitive to temperature change. The key is determining when, during Earth's history, each type of bacteria came into existence.

"Remarkably, our results are nearly identical to geologic studies that estimate the temperature trend for the ancient ocean over the same time period. The convergence of results from biology and geology show that Earth's environment has continuously been changing since life began, and life has adapted appropriately to survive," Gaucher said.


Story Source:

The above story is based on materials provided by University of Florida. Note: Materials may be edited for content and length.


Cite This Page:

University of Florida. "Ancient Proteins Rebuilt To Reveal Primordial Earth's Temperature." ScienceDaily. ScienceDaily, 16 February 2008. <www.sciencedaily.com/releases/2008/02/080207115401.htm>.
University of Florida. (2008, February 16). Ancient Proteins Rebuilt To Reveal Primordial Earth's Temperature. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2008/02/080207115401.htm
University of Florida. "Ancient Proteins Rebuilt To Reveal Primordial Earth's Temperature." ScienceDaily. www.sciencedaily.com/releases/2008/02/080207115401.htm (accessed April 18, 2014).

Share This



More Fossils & Ruins News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Couple Finds Love Letters From WWI In Attic

Couple Finds Love Letters From WWI In Attic

Newsy (Apr. 17, 2014) A couple found love letters from World War I in their attic. They were able to deliver them to relatives of the writer of those letters. Video provided by Newsy
Powered by NewsLook.com
Erotic Art Offers Glimpse of China's 'lost' Sexual Philosophy

Erotic Art Offers Glimpse of China's 'lost' Sexual Philosophy

AFP (Apr. 16, 2014) Explicit Chinese art works dating back centuries go on display in Hong Kong, revealing China's ancient relationship with sex. Video provided by AFP
Powered by NewsLook.com
French Historians Fight to Save Iconic La Samaritaine Buildings

French Historians Fight to Save Iconic La Samaritaine Buildings

AFP (Apr. 15, 2014) Parisians and local historians are fighting to save one of the French capital's iconic buildings, the La Samaritaine department store. Duration: 01:42 Video provided by AFP
Powered by NewsLook.com
Bee Fossils Provide Insight Into Ice Age Environment

Bee Fossils Provide Insight Into Ice Age Environment

Newsy (Apr. 12, 2014) Archeologists have found many fossils in the La Brea Tar Pits, including those of saber-tooth tigers and mammoths. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins