Featured Research

from universities, journals, and other organizations

Natural Secretion Marks Difference Between Mole And Melanoma

Date:
February 8, 2008
Source:
Howard Hughes Medical Institute
Summary:
One might call it a tale of two melanocytes. Given the same genetic mutation, why does one melanocyte shut down growth and become a relatively benign mole, while another rages out of control and develops into deadly melanoma? In trying to tease out the answer to this simple question, researchers have uncovered a protein that stops the growth of melanoma, a cancer that develops from pigment-producing cells in the skin called melanocytes. If this natural anti-cancer agent can be produced and delivered to tumors, it might serve as a targeted chemotherapy for metastatic melanoma, a condition which is "basically untreatable" today.

Moles. Researchers have uncovered a protein that stops the growth of melanoma, a cancer that develops from pigment-producing cells in the skin called melanocytes.
Credit: Michele Hogan

One might call it a tale of two melanocytes. Given the same genetic mutation, why does one melanocyte shut down growth and become a relatively benign mole, while another rages out of control and develops into deadly melanoma?

In trying to tease out the answer to this simple question, Howard Hughes Medical Institute (HHMI) researchers have uncovered a protein that stops the growth of melanoma, a cancer that develops from pigment-producing cells in the skin called melanocytes. HHMI investigator Michael Green and colleagues at the University of Massachusetts Medical School reported their identification of the genetic underpinnings of a new way to thwart one of the deadliest forms of cancer in the February 8, 2008, issue of the journal Cell.

Green and his colleagues began by designing experiments that would help them determine what separates melanomas from ordinary moles at the genetic level. Moles, also known as nevi, and melanoma often result from the same genetic mutation, and the biological pathway that differentiates the two had been a mystery. The new study uncovers a relatively unknown protein that regulates the melanocyte's "decision" to ward off cancer by either entering a programmed hibernation or committing suicide.

According to the American Cancer Society, 60,000 people in the United States developed melanoma in 2007, and more than 8,000 died of the disease. Melanoma is caused by the uncontrolled proliferation of melanocytes, whose pigment, melanin, protects the skin against the sun's ultraviolet rays. Nevi, which are benign, are also caused by abnormal growth and differentiation of melanocytes.

While nevi are, by definition, non-cancerous, more than half the time the same mutation is at fault in melanoma and nevi: a single amino acid change in a protein called BRAF. BRAF is part of a signaling system that is important for cell growth and proliferation. The BRAF mutation found in nevi and melanoma increases the activity of the BRAF protein, prompting cells to multiply abnormally. In some melanocytes with this mutation, the proliferation cannot be stopped, and cancer develops.

But sometimes when the mutated BRAF gene is expressed in melanocytes, those cells go into a state of permanent hibernation via a process known as senescence. These cells form nevi, not melanoma. This, according to Green, indicates that the genetic checks and balances within those cells are working correctly. "The cell has sensed this oncogenic influence--activated BRAF--and that induces an anti-cancer mechanism to throw the cell into this frozen state," he said. Green added that sometimes cells simply commit suicide instead of senescing.

Cancer results when something blocks this failsafe mechanism, said Green. "While this phenomenon was known, the components and the pathways involved were not," he said.

Green, his postdoctoral fellow Narendra Wajapeyee, and their colleagues did a genome-wide search for the proteins involved. They used engineered retroviruses to insert short bits of RNA to selectively turn off individual genes in a series of melanocytes. Some of the cells progressed to cancer, while others did not. After testing thousands of genes, they found 17 that were required for activated BRAF to induce either senescence or suicide. Together, Green said, the proteins made by these genes make up the body's melanoma defense pathway.

Green's group found that three of those proteins are required for both the senescence and programmed cell death pathways. The identity of one of those proteins, insulin-like growth factor binding protein 7 (IGFBP7), surprised the researchers. Not much was known about IGFBP7, except that it was secreted, said Green. A secreted protein does not stay inside the cell that produces it, but instead is released from the cell and moves through the blood to other cells. Green said that a secreted protein's role in the pathway caught them off guard, because "we would have thought this process would be purely intracellular."

Green and his colleagues focused their attention on IGFBP7 because its presence suggested something intriguing: If one otherwise healthy melanocyte begins expressing BRAF, the IGFBP7 it produces can enter cells around it, prompting lots of melanocytes to "switch off," rather than risking a tumor.

In the experiments reported in Cell, the researchers exposed human melanoma cells in culture to recombinant IGFBP7. The protein had the same genetic code as the human version, but was produced using genetically modified insect cells. The melanoma cells that were treated with IGFBP7 committed suicide-- just as though their anti-cancer mechanism was working correctly.

The researchers also injected the protein into the bloodstream of mice on to which human melanoma tumors had been grafted. IGFBP7 entered the tumor cells and stopped their growth in the mice. "Melanoma cells [caused by BRAF mutations] shut off expression of this key regulator," said Green. "Because of that, the cells escape from senescence and form a tumor."

According to Green, the research also answers another controversy in the field: Are nevi dead-ends or are they precursors to melanoma" "If you go in and see a dermatologist, if they see a mole, they will generally... cut it off," he said. "They don't want to take the chance that it could be a precursor."

However, Green thinks his results point in the other direction. Because IGFBP7 is a secreted protein, even if one activated BRAF-containing -- but otherwise healthy -- cell in the nevi stopped producing IGFBP7 and threatened to form a tumor, the IGFBP7 being secreted from the cells around it would kill it. "It's an extremely powerful anti-cancer mechanism," said Green.

The team's findings are important not only from a research standpoint, but also for future clinical treatments, Green noted. Melanoma can be surgically removed if caught early, but in advanced cases there is really no treatment for it. Green said IGFBP7's ability to target melanoma tumors throughout the body may make it a powerful tool for cancer therapy. "We're really very excited about the prospects of trying to advance this as a melanoma treatment," he said.

If this natural anti-cancer agent, called IGFBP7, can be produced and delivered to tumors, it might serve as a targeted chemotherapy for metastatic melanoma, a condition which is "basically untreatable" today, said Green. It might also be used to treat other cancers with mutations in the oncogene known as BRAF.


Story Source:

The above story is based on materials provided by Howard Hughes Medical Institute. Note: Materials may be edited for content and length.


Cite This Page:

Howard Hughes Medical Institute. "Natural Secretion Marks Difference Between Mole And Melanoma." ScienceDaily. ScienceDaily, 8 February 2008. <www.sciencedaily.com/releases/2008/02/080207124631.htm>.
Howard Hughes Medical Institute. (2008, February 8). Natural Secretion Marks Difference Between Mole And Melanoma. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2008/02/080207124631.htm
Howard Hughes Medical Institute. "Natural Secretion Marks Difference Between Mole And Melanoma." ScienceDaily. www.sciencedaily.com/releases/2008/02/080207124631.htm (accessed August 23, 2014).

Share This




More Health & Medicine News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Two US Ebola Patients Leave Hospital Free of the Disease

Two US Ebola Patients Leave Hospital Free of the Disease

AFP (Aug. 21, 2014) Two American missionaries who were sickened with Ebola while working in Liberia and were treated with an experimental drug are doing better and have left the hospital, doctors say on August 21, 2014. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins