Featured Research

from universities, journals, and other organizations

New Blood Test Detects Antibodies That Protect Against Malaria

Date:
March 6, 2008
Source:
ETH Zurich/Swiss Federal Institute of Technology
Summary:
A person's immune system can form antibodies against sugar molecules on the malaria pathogen, which protect against serious illness. A new blood test enables these antibodies to be detected. Tests show that blood samples taken from adults living in areas of Africa where malaria is endemic contain specific antibodies against particular GPIs. While infection is still possible despite the antibodies, the consequences are less serious.

Malaria pathogen plasmodium falciparum (blue).
Credit: M. Tamborrini, Basel

A person's immune system can form antibodies against sugar molecules on the malaria pathogen, which protect against serious illness. A new blood testdeveloped by a team of ETH Zurich and Swiss Tropical Institute researchers headed by Professor Peter Seeberger enables these antibodies to be detected. The researchers' work was published online in the journal Nature Chemical Biology on March 2, 2008.

Related Articles


ETH Zurich professor Peter Seeberger has been working on a sugar-based malaria vaccine for years. The new test takes him one important step closer to his goal. The malaria pathogen plasmodium falciparum carries poisonous sugar molecules -- called GPIs for short -- on its surface that are able to be individually identified. Professor See-berger's research team is now developing a new method that demonstrates that the malaria pathogen's toxic sugar molecules trigger a specific immune reaction in adults.

Antibodies in blood from malaria regions

Tests show that blood samples taken from adults living in areas of Africa where malaria is endemic contain specific antibodies against particular GPIs. While infection is still possible despite the antibodies, the consequences are less serious. The immune system recognizes the poisonous sugar molecules as foreign bodies and blocks their toxic impact. Not living in high-risk areas, Europeans lack the relevant antibodies. As soon as Europeans are infected with malaria, the number of antibodies increases significantly. Subsequently, there is a direct link between the amount of antibodies and protection against the disease.

Inexpensive detection

This insight is thanks to a novel method for detecting antibodies. Faustin Kamena, a post-doc in Professor Seeberger's lab, has developed a special chip that can, inexpensively and with minute quantities of blood serum and sugar molecules, determine whether or not someone has formed particular antibodies against various GPIs. To this end, the researchers use the purest possible GPIs. These can be produced synthetically and in large amounts in a laboratory, as the Seeberger team has demonstrated in earlier research.

The new method involves affixing over 64 pads comprising pinpoint dots to glass slides. Every little pad consists of several tiny heaps of different GPIs in varying concentrations. When blood serum is then administered to such a pad, possible antibodies specifically bind to certain sugar molecules. Dyes then reveal to which GPIs the antibodies have attached themselves.

Help for infants

Thanks to the information obtained from the chip, scientists can produce the specific sugar molecules that the immune system has to recognize. The findings on natural resistance subsequently acquired are crucial to developing a sugar-based malaria vaccine. This could prove particularly beneficial to children in malaria-infested regions.

The millions of malaria sufferers are primarily infants under the age of five as only adults develop antibodies against the malaria pathogen's sugars. An infant's immune system is incapable of recognizing and combating the toxic sugar molecules. Consequently, a new, selective vaccine is now called for. Professor Seeberger states: "This evidence is another important step towards finding a malaria vaccine because we now know which antibodies protect adults."

Journal reference: Kamena, F. et al. (2008): Synthetic GPI array to study antitoxic malaria response, Nature Chemical Biology. March 2008; doi:10.1038/nchembio.75


Story Source:

The above story is based on materials provided by ETH Zurich/Swiss Federal Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

ETH Zurich/Swiss Federal Institute of Technology. "New Blood Test Detects Antibodies That Protect Against Malaria." ScienceDaily. ScienceDaily, 6 March 2008. <www.sciencedaily.com/releases/2008/03/080303095624.htm>.
ETH Zurich/Swiss Federal Institute of Technology. (2008, March 6). New Blood Test Detects Antibodies That Protect Against Malaria. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2008/03/080303095624.htm
ETH Zurich/Swiss Federal Institute of Technology. "New Blood Test Detects Antibodies That Protect Against Malaria." ScienceDaily. www.sciencedaily.com/releases/2008/03/080303095624.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins