Featured Research

from universities, journals, and other organizations

New Potential Drug Target For The Treatment Of Atherosclerosis

Date:
March 6, 2008
Source:
Salk Institute
Summary:
A nuclear receptor protein, known for controlling the ability of cells to burn fat, also exerts powerful anti-inflammatory effects in arteries, suppressing atherosclerosis in mice prone to developing the harmful plaques. The research offers a new and specific target for the development of drugs that specifically treat cardiovascular complications associated with metabolic syndrome.

Left: Plaque builds up in the aortic valve of mice prone to atherosclerosis. Right: Activating PPAR gamma significantly reduces the size of aortic lesions.
Credit: Courtesy of Dr. Grant Barish, Salk Institute for Biological Studies

A nuclear receptor protein, known for controlling the ability of cells to burn fat, also exerts powerful anti-inflammatory effects in arteries, suppressing atherosclerosis in mice prone to developing the harmful plaques, according to new research by scientists at the Salk Institute for Biological Studies and the Harvard School of Public Health.

Their findings, reported in the online edition of the Proceedings of the National Academy of Sciences, offer a new and specific target for the development of drugs that specifically treat cardiovascular complications associated with metabolic syndrome.

"Heart disease is like a ticking clock--it is progressive, relentlessly marching forward accelerated by a mix of high fat diets, inflammation and high blood pressure. We show that PPAR delta offers a kind of genetic shortcut around each of these medical roadblocks," says Howard Hughes Medical Investigator Ronald M. Evans, Ph.D., a professor in the Salk Institute's Gene Expression Laboratory, who co-directed the study with Chih-Hao Lee, a professor in the Department of Genetics and Complex Diseases at the Harvard School of Public Health.

"Most people believe cholesterol plays a predominant role in atherosclerosis. Our study suggests that targeting inflammation at lesion sites is just as important," adds Lee.

Like the Yin and Yang of fat metabolism, PPAR delta -- the focus of the current study -- and its counterpart PPAR gamma control the storage and burning of fat. PPAR gamma is in charge of storing surplus glucose as fat. When PPAR gamma is stimulated by a drug the body's response to insulin improves, lowering levels of circulating glucose. Its sibling gene switch, PPAR delta, controls the ability of cells to burn fat. Activating PPAR delta revs up the fat-burning capacity of adipose tissue and muscle, dramatically lowers overall body weight, increases HDL ("the good cholesterol"), reduces circulating triglycerides, and improves hyperglycemia.

"Cardiovascular disease is a leading cause of death in patients with metabolic syndrome, a clustering of obesity-related disorders including insulin resistance, hypertension, and dyslipidemia," says postdoctoral researcher and first author Grant D. Barish, M.D. "Since PPAR delta plays a key role in fat metabolism and PPAR delta drugs can protect against obesity, we wanted to know whether activating PPAR delta would protect against atherosclerosis."

Atherosclerosis or "hardening of the arteries" is a chronic disease in which high cholesterol levels coupled with inflammation lead to the build-up of fatty deposits, called plaque, on the inner walls of arteries. Eventually these plaques can limit blood flow, leading to angina, or they may rupture, resulting in blood clots that block arteries and cause heart attacks or strokes.

When the researchers fed an experimental drug that turns on PPAR delta to genetically altered mice that develop the characteristic plaques at an early age, especially when placed on a high-fat diet, mice developed 25--30 percent fewer plaques. Further studies revealed that PPAR delta not only raises HDL levels but also suppresses the inflammatory response in the artery, dramatically slowing down lesion progression.

Barish and Evans also contributed to a related study, which was led by researchers at the University of California, Los Angeles and published in the same issue of PNAS. Using a different mouse model to mimic the development of atherosclerosis, the UCLA researchers detected an even more pronounced anti-inflammatory effect that slashed the number of aortic lesions by up to 70 percent.

While Barish, a clinically trained endocrinologist, cautions that extrapolating from mice to humans is inherently fraught with complications, he believes that drugs switching on PPAR delta have the potential to protect against obesity, insulin resistance and their associated cardiovascular risks.

"The discovery that any orally active compound can delay the progression of heart disease is rare, and considering the importance of the problem, we are hopeful that this work can be quickly carried into the clinic," says Evans.

Researchers who contributed to the study include postdoctoral researchers Annette R. Atkins, Ph.D., Michael Downes, Ph.D., Ling-Wa Chong, Ph.D., Mike Nelson, Ph.D, Yuhua Zou, Ph.D., and Peter Olson, Ph.D., in the Gene Expression Laboratory, Hoosang Hwang, Ph.D., and Heonjoong Kang, Ph.D., at the Seoul National University, Korea, and Linda Curtiss, Ph.D., a professor in the Department of Immunology and Vascular Biology at the Scripps Research Institute.


Story Source:

The above story is based on materials provided by Salk Institute. Note: Materials may be edited for content and length.


Cite This Page:

Salk Institute. "New Potential Drug Target For The Treatment Of Atherosclerosis." ScienceDaily. ScienceDaily, 6 March 2008. <www.sciencedaily.com/releases/2008/03/080304123424.htm>.
Salk Institute. (2008, March 6). New Potential Drug Target For The Treatment Of Atherosclerosis. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2008/03/080304123424.htm
Salk Institute. "New Potential Drug Target For The Treatment Of Atherosclerosis." ScienceDaily. www.sciencedaily.com/releases/2008/03/080304123424.htm (accessed September 1, 2014).

Share This




More Health & Medicine News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

Reuters - US Online Video (Aug. 30, 2014) California lawmakers pass a bill requiring universities to adopt "affirmative consent" language in their definitions of consensual sex, part of a nationwide drive to curb sexual assault on campuses. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins