Featured Research

from universities, journals, and other organizations

Stratospheric Ozone Chemistry Plays An Important Role For Atmospheric Airflow Patterns

Date:
March 11, 2008
Source:
Alfred Wegener Institute for Polar and Marine Research
Summary:
Interactions between the stratospheric ozone chemistry and atmospheric air flow lead to significant changes of airflow patterns from the ground up to the stratosphere. Scientists at the Research Unit Potsdam of the Alfred Wegener Institute for Polar and Marine Research have investigated this fundamental process for climate interactions in the Arctic, and for the first time, incorporated it into climate models. Until now, it was not known what caused the natural variations of atmospheric air flow patterns which have played an important role for climate changes in the last decades.

Difference of the sea level pressure between simulations with the new model including interactive stratospheric ozone chemistry relative to the standard model. There is an increase of air pressure above the Arctic (positive difference) and a decrease of air pressure in mid-latitudes (negative difference). This pattern is similar to the air pressure pattern of the negative phase of the Arctic Oscillation.
Credit: Sascha Brand / Alfred Wegener Institute

Interactions between the stratospheric ozone chemistry and atmospheric air flow lead to significant changes of airflow patterns from the ground up to the stratosphere. Scientists at the Research Unit Potsdam of the Alfred Wegener Institute for Polar and Marine Research have investigated this fundamental process for climate interactions in the Arctic, and for the first time, incorporated it into climate models. Until now, it was not known what caused the natural variations of atmospheric air flow patterns which have played an important role for climate changes in the last decades.

Atmospheric airflows follow certain preferred patterns. The most important pattern for the northern hemisphere is the Arctic Oscillation. It's a spacious oscillation of the atmosphere that is characterized by opposing anomalies in air pressure in the central Arctic region and in parts of the mid- and subtropical latitudes. This oscillation of the atmosphere lasts for decades although it can be more or less pronounced.

In the positive phase of the Arctic Oscillation, which has been predominant since 1970, the polar vortex during the winter is stable and the exchange of air masses between the mid- and higher latitudes is limited. In mid-latitudes strong westerly winds bring warm air from the Atlantic Ocean to North and Central Europe and Siberia during the winter. In the negative phase of the Arctic Oscillation cold polar air can penetrate further south which leads to harsh winters in Europe.

So far feedback between the chemical processes in the stratosphere and the circulation in the troposphere and stratosphere (height between 0 and 10 kilometers or 10 and about 50 kilometers) have not been included in complex global climate models linking atmosphere and ocean. For the first time, scientists from the Alfred Wegener Institute have included a module of stratospheric ozone chemistry into a coupled global climate model. The scientists show that ozone chemistry significantly influences the Arctic Oscillation by comparing simulations of the standard model with results from the model extended by the new ozone chemistry module. Changes of atmospheric air flows and temperature distribution lead to an increase of the negative phase of the Arctic Oscillation during the winter seasons.

"Our research is an important contribution to reduce the uncertainty in the simulation of today's climate. Today's climate models carry, contrary to many claims, still a high level of uncertainty. Only by understanding the basic processes in the Arctic, can we quantify these deviations and eliminate them," said Sascha Brand of the Alfred Wegener Institute, main author of the published study. The results indicate that if interactions between atmospheric air flow and stratospheric ozone chemistry are being taken into account, they will also have an influence on the stability of the polar vortex in the simulation of future climate developments and should therefore be included in climate models. In a follow-up project, the new model will be used for the calculation of future climate developments.

This research has just been published in the journal Geophysical Research Letters (Brand et al, Geophys. Res. Lett.).


Story Source:

The above story is based on materials provided by Alfred Wegener Institute for Polar and Marine Research. Note: Materials may be edited for content and length.


Cite This Page:

Alfred Wegener Institute for Polar and Marine Research. "Stratospheric Ozone Chemistry Plays An Important Role For Atmospheric Airflow Patterns." ScienceDaily. ScienceDaily, 11 March 2008. <www.sciencedaily.com/releases/2008/03/080307224040.htm>.
Alfred Wegener Institute for Polar and Marine Research. (2008, March 11). Stratospheric Ozone Chemistry Plays An Important Role For Atmospheric Airflow Patterns. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2008/03/080307224040.htm
Alfred Wegener Institute for Polar and Marine Research. "Stratospheric Ozone Chemistry Plays An Important Role For Atmospheric Airflow Patterns." ScienceDaily. www.sciencedaily.com/releases/2008/03/080307224040.htm (accessed July 31, 2014).

Share This




More Earth & Climate News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Waves In Arctic Ocean Threaten Polar Ice

Big Waves In Arctic Ocean Threaten Polar Ice

Newsy (July 30, 2014) Big waves in parts of the Arctic Ocean are unprecedented, mainly because they used to be covered in ice. Video provided by Newsy
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
In Virginia, the Rise of a New Space Coast

In Virginia, the Rise of a New Space Coast

AP (July 30, 2014) Every summer, tourists make the pilgrimage to Chincoteague Island, Va. to see wild ponies cross the Assateague Channel. But, it's the rockets sending to supplies to the International Space Station that are making this a year-round destination. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins