Featured Research

from universities, journals, and other organizations

Populations Of Brain Cells Adapt To Changing Images

Date:
March 17, 2008
Source:
University of Texas Health Science Center at Houston
Summary:
Neuroscientists studying the mind's ability to process images have completed the first empirical study to demonstrate, using animal models, how populations of nerve cells in visual cortex adapt to changing images. Their findings could lead to sight-improving therapies for people following trauma or stroke.

Neuroscientists studying the mind's ability to process images have completed the first empirical study to demonstrate, using animal models, how populations of nerve cells in visual cortex adapt to changing images. Their findings could lead to sight-improving therapies for people following trauma or stroke. The study at The University of Texas Health Science Center at Houston appears in the March 13 issue of the journal Nature.

"Our perception of the environment relies on the capacity of neural networks to adapt rapidly to changes in incoming stimuli," wrote senior author Valentin Dragoi, Ph.D., assistant professor of neurobiology and anatomy at The University of Texas Medical School at Houston. "It is increasingly being realized that the neural code is adaptive, that is, sensory neurons change their responses and selectivity in a dynamic manner to match the changes in input stimuli." The neural code is the set of rules that transforms electrical impulses in the brain into thoughts, memories and decisions.

In the study, Dragoi and co-author Diego Gutnisky, a graduate research assistant at The University of Texas Graduate School of Biomedical Sciences at Houston, measured the effects of visual stimulation on the responses of multiple neurons whose electrical activity was measured simultaneously in animals. They carefully examined the responses of a population of cells in visual cortex to dynamic stimuli, which consisted of movie sequences displayed on a video monitor.

"We provide empirical evidence that brief exposure, or adaptation, to a fixed stimulus causes pronounced changes in the degree of cooperation between individual neurons and an improvement in the efficiency with which the population of cells encodes information," Dragoi and Gutnisky report. "These results are consistent with the 'efficient coding hypothesis' - that is, sensory neurons are adapted to the statistical properties of the stimuli that they are exposed to and with changes in human discrimination performance after adaptation."

This information may be helpful in the fight against brain illness. "Right now, we don't know the causes of brain illnesses such as Alzheimer's disease or disorders caused by trauma," Dragoi said. "However, it is our belief that understanding not only how individual neurons work, but how they cooperate with their neighbors to impact the functions of the brain involved in diseases may help develop better diagnostic tools and therapies to improve visual function following trauma, stroke or disease, or even prevent brain disorder."

While their study focused on how neuronal populations adapt to visual stimulation, the same could hold true for other senses - hearing, smell, taste and touch, Dragoi said. "We're trying to understand how a network of sensory neurons changes its encoding properties to properly represent the environment," he said. "Our results may have general implications for sensory and motor coding in a variety of brain areas."

The brain is the control center of the central nervous system and is responsible for behavior. It contains more than 100 billion neurons or nerve cells, each linked to as many as 10,000 other neurons or nerve cells. "One dream of neuroscientists is to crack the neural code and through our study we have made steps in understanding how populations of neurons encode information," Dragoi said.

Dragoi heads the five-person Cortical Mechanisms of Visual Behavior Laboratory at the UT Medical School at Houston. Its research goal is to understand how individual neurons and populations encode and process information in real time.

The study in Nature is titled "Adaptive coding of visual information in neural populations" and was supported by the Pew Scholars Program, the James S. McDonnell Foundation and the National Eye Institute.


Story Source:

The above story is based on materials provided by University of Texas Health Science Center at Houston. Note: Materials may be edited for content and length.


Cite This Page:

University of Texas Health Science Center at Houston. "Populations Of Brain Cells Adapt To Changing Images." ScienceDaily. ScienceDaily, 17 March 2008. <www.sciencedaily.com/releases/2008/03/080312141225.htm>.
University of Texas Health Science Center at Houston. (2008, March 17). Populations Of Brain Cells Adapt To Changing Images. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2008/03/080312141225.htm
University of Texas Health Science Center at Houston. "Populations Of Brain Cells Adapt To Changing Images." ScienceDaily. www.sciencedaily.com/releases/2008/03/080312141225.htm (accessed April 16, 2014).

Share This



More Health & Medicine News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com
How Mt. Everest Helped Scientists Research Diabetes

How Mt. Everest Helped Scientists Research Diabetes

Newsy (Apr. 15, 2014) British researchers were able to use Mount Everest's low altitudes to study insulin resistance. They hope to find ways to treat diabetes. Video provided by Newsy
Powered by NewsLook.com
Carpenter's Injury Leads To Hundreds Of 3-D-Printed Hands

Carpenter's Injury Leads To Hundreds Of 3-D-Printed Hands

Newsy (Apr. 14, 2014) Richard van As lost all fingers on his right hand in a woodworking accident. Now, he's used the incident to create a prosthetic to help hundreds. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins