Featured Research

from universities, journals, and other organizations

On The Trail Of Rogue Genetically Modified Pathogens

Date:
March 18, 2008
Source:
BioMed Central/Genome Biology
Summary:
Bacteria can be used to engineer genetic modifications, thereby providing scientists with a tool to combat many challenges in areas from food production to drug discovery. However, this sophisticated technology can also be used maliciously, raising the threat of engineered pathogens. New research in Genome Biology shows that computational tools could become a vital resource for detecting rogue genetically engineered bacteria in environmental samples.

New computational tools could become a vital resource for detecting rogue genetically engineered bacteria in environmental samples.
Credit: iStockphoto/Sebastian Kaulitzki

Bacteria can be used to engineer genetic modifications, thereby providing scientists with a tool to combat many challenges in areas from food production to drug discovery. However, this sophisticated technology can also be used maliciously, raising the threat of engineered pathogens. New research shows that computational tools could become a vital resource for detecting rogue genetically engineered bacteria in environmental samples.

Jonathan Allen, Shea Gardner and Tom Slezak of the Lawrence Livermore National Laboratory in California, US, designed new computational tools that identify a set of DNA markers that can distinguish between artificial vector sequences and natural DNA sequences. Natural plasmids and artificial vector sequences have much in common, but these new tools show the potential to achieve high sensitivity and specificity, even when detecting previously unsequenced vectors in microarray-based bioassays.

A new computational genomics tool was developed to compare all available sequenced artificial vectors with available natural sequences, including plasmids and chromosomes, from bacteria and viruses. The tool clusters the artificial vector sequences into different subgroups based on shared sequence; these shared sequences were then compared with the natural plasmid and chromosomal sequence information so as to find regions that are unique to the artificial vectors.

Nearly all the artificial vector sequences had one or more unique regions. Short stretches of these unique regions are termed 'candidate DNA signatures' and can be used as probes for detecting an artificial vector sequence in the presence of natural sequences using a microarray. Further tests showed that subgroups of candidate DNA signatures are far more likely to match unseen artificial than natural sequences.

The authors say that the next step is to see whether a bioassay design using DNA signatures on microarrays can spot genetically modified DNA in a sample containing a mixture of natural and modified bacteria. The scientific community will need to cooperate with computational experts to sequence and track available vector sequences if DNA signatures are to be used successfully to support detection and deterrence against malicious genetic engineering applications. Scientists would be able to maintain an expanding database of DNA signatures to track all sequenced vectors.

"As with any attempt to counter malicious use of technology, detecting genetic engineering in microbes will be an immense challenge that requires many different tools and continual effort," says Allen.

Journal reference: Jonathan E Allen, Shea N Gardner and Tom R Slezak. DNA signatures for detecting genetic engineering in bacteria. Genome Biology (in press)


Story Source:

The above story is based on materials provided by BioMed Central/Genome Biology. Note: Materials may be edited for content and length.


Cite This Page:

BioMed Central/Genome Biology. "On The Trail Of Rogue Genetically Modified Pathogens." ScienceDaily. ScienceDaily, 18 March 2008. <www.sciencedaily.com/releases/2008/03/080317191441.htm>.
BioMed Central/Genome Biology. (2008, March 18). On The Trail Of Rogue Genetically Modified Pathogens. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2008/03/080317191441.htm
BioMed Central/Genome Biology. "On The Trail Of Rogue Genetically Modified Pathogens." ScienceDaily. www.sciencedaily.com/releases/2008/03/080317191441.htm (accessed April 20, 2014).

Share This



More Plants & Animals News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins