Featured Research

from universities, journals, and other organizations

Why Matter Matters In The Universe

Date:
March 30, 2008
Source:
University of Melbourne
Summary:
A new physics discovery explores why there is more matter than antimatter in the universe. The paper reveals that investigation into the process of B-meson decays has given insight into why there is more matter than antimatter in the universe.

A new physics discovery explores why there is more matter than antimatter in the universe.

Related Articles


The latest research findings, which involved significant contributions from physicists at the University of Melbourne, have been recently published in the journal Nature. The paper reveals that investigation into the process of B-meson decays has given insight into why there is more matter than antimatter in the universe.

“B-mesons are a new frontier of investigation for us and have proved very exciting in the formation of new thought in the field of particle physics.” said Associate Professor Martin Sevior of the University’s School of Physics who led the research.

Sevior says that B-mesons contain heavy quarks that can only be created in very high energy particle accelerators. Their decays provide a powerful means of probing the exotic conditions that occurred in the first fraction of a second after the Big Bang created the Universe.

“Our universe is made up almost completely of matter. While we’re entirely used to this idea, this does not agree with our ideas of how mass and energy interact. According to these theories there should not be enough mass to enable the formation of stars and hence life.”

“In our standard model of particle physics, matter and antimatter are almost identical. Accordingly as they mix in the early universe they annihilate one another leaving very little to form stars and galaxies. The model does not come close to explaining the difference between matter and antimatter we see in the nature. The imbalance is a trillion times bigger than the model predicts.”

Sevior says that this inconsistency between the model and the universe implies there is a new principle of physics that we haven’t yet discovered.

“Together with our colleagues in the Belle experiment, based at KEK in Japan, we have produced vast numbers of B mesons with the world’s most intense particle collider.”

“We then looked at how the B-mesons decay as opposed to how the anti-B-mesons decay. What we find is that there are small differences in these processes. While most of our measurements confirm predictions of the Standard Model of Particle Physics, this new result appears to be in disagreement.”

“It is a very exciting discovery because our paper provides a hint as to what the new principle of physics is that led to our Universe being able to support life.”


Story Source:

The above story is based on materials provided by University of Melbourne. Note: Materials may be edited for content and length.


Cite This Page:

University of Melbourne. "Why Matter Matters In The Universe." ScienceDaily. ScienceDaily, 30 March 2008. <www.sciencedaily.com/releases/2008/03/080328094140.htm>.
University of Melbourne. (2008, March 30). Why Matter Matters In The Universe. ScienceDaily. Retrieved April 19, 2015 from www.sciencedaily.com/releases/2008/03/080328094140.htm
University of Melbourne. "Why Matter Matters In The Universe." ScienceDaily. www.sciencedaily.com/releases/2008/03/080328094140.htm (accessed April 19, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, April 19, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

At Least 15 Injured in a California Natural Gas Pipeline Explosion

At Least 15 Injured in a California Natural Gas Pipeline Explosion

Reuters - US Online Video (Apr. 18, 2015) At least 15 injred after natural gas transmission line ruptures in Fresno, California. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
NASA Electric Rover Goes for a Spin

NASA Electric Rover Goes for a Spin

Reuters - Innovations Video Online (Apr. 17, 2015) NASA&apos;s prototype electric buggy could influence future space rovers and conventional cars. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Scientists Create Self-Powering Camera

Scientists Create Self-Powering Camera

Reuters - Innovations Video Online (Apr. 17, 2015) American scientists build a self-powering camera that captures images without using an external power source, allowing it to operate indefinitely in a well-lit environment. Elly Park reports. Video provided by Reuters
Powered by NewsLook.com
The State Of Virtual Reality

The State Of Virtual Reality

Newsy (Apr. 17, 2015) Virtual Reality is still a young industry. What’s on offer and what should we expect from our immersive new future? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins