Featured Research

from universities, journals, and other organizations

One Year After Solomon Islands, Scientists Learn Barrier To Earthquakes Weaker Than Expected

Date:
April 7, 2008
Source:
University of Texas at Austin
Summary:
On the one year anniversary of a devastating earthquake and tsunami in the Solomon Islands that killed 52 people, scientists are revising their understanding of the potential for similar giant earthquakes in other parts of the globe. According to a new report in Nature Geoscience, the rupture in the Solomon Islands broke through a geological province previously thought to form a barrier to earthquakes. Implications are worldwide. This discovery means other sites such as the Cascadia Subduction Zone in northwestern North America have potential for more severe earthquakes than once thought.

On the one year anniversary of a devastating earthquake and tsunami in the Solomon Islands that killed 52 people and displaced more than 6,000, scientists are revising their understanding of the potential for similar giant earthquakes in other parts of the globe. This discovery means other sites such as the Cascadia Subduction Zone in northwestern North America have potential for more severe earthquakes than once thought.

Related Articles


Geoscientists from The University of Texas at Austin's Jackson School of Geosciences and their colleagues report this week that the rupture, which produced an 8.1 magnitude earthquake, broke through a geological province previously thought to form a barrier to earthquakes. This could mean that other sites with similar geological barriers, such as the Cascadia Subduction Zone in northwestern North America, have the potential for more severe earthquakes than once thought.

In an advance online publication in the journal Nature Geoscience, the scientists report that the rupture started on the Pacific seafloor near a spot where two of Earth's tectonic plates are subducting, or diving below, a third plate.

The two subducting plates--the Australian and Woodlark plates--are also spreading apart and sliding past one another. The boundary between them, called Simbo Ridge, was thought to work as a barrier to the propagation of a rupture because the two plates are sliding under the overriding Pacific plate at different rates, in different directions, and each is likely to have a different amount of built-up stress and friction with the overlying rock. But the boundary did not stop the rupture from spreading from one plate to the other.

"Both sides of that boundary had accumulated elastic strain," says Fred Taylor, a researcher at the university's Institute for Geophysics and principal investigator for the project. "Those plates hadn't had an earthquake for quite a while and they were both ready to rupture. When the first segment ruptured, there was probably stress transferred from one to the other.

"What our work shows is that this is a barrier, but not a reliable one," says Taylor. In other words, it resists rupturing, but not insurmountably. The work has implications for earthquakes in other parts of the world.

"Cascadia is an important boundary because of its potential for a great earthquake in the future," says Taylor. "You have these transform faults separating the plates--Juan de Fuca, Gorda and Explorer. If such boundaries are not a barrier to rupture in the Solomons, there's no reason to believe they are in Cascadia either."

The last great earthquake along the Cascadia Subduction Zone was in the year 1700. The intensity of the quake has been estimated at around magnitude 9. If it happened today, it could be devastating to people living in the northwestern U.S. and western Canada. The geological record suggests such great quakes occur there every few hundred years.

The scientists were able to piece together where and how the fault near the Solomons ruptured by observing how it affected corals living in shallow water around the islands. Because corals normally grow right up to the low-tide water mark, scientists can readily measure how far they have been displaced up or down by an earthquake. In the case of uplift, scientists measure how far the coral dies back from its previous height as a result of being thrust up out of the water. In the case of subsidence, scientists measure how deep the coral is compared to its usual maximum depth below sea level.

"In many ways the corals are much better than manmade instruments as you don't need to deploy corals or change their batteries--they just go on measuring uplift and subsidence for you anyhow," says Taylor.

With funds from the Jackson School of Geosciences, Taylor was able to travel to the Solomons just 10 days after the earthquake to make observations, an extremely swift trip in the world of scientific field work. It was part of a new rapid response capability the Jackson School is developing for research that cannot wait several months for government or foundation grants to be approved.

Taylor's co-authors include Cliff Frohlich and Matt Hornbach, also at the Institute for Geophysics, Richard W. Briggs and Aron Meltzner at the California Institute of Technology, Abel Brown at Ohio State University, and Alison K. Papabatu and Douglas Billy at the Department of Mines, Energy and Water in the Solomon Islands.


Story Source:

The above story is based on materials provided by University of Texas at Austin. Note: Materials may be edited for content and length.


Cite This Page:

University of Texas at Austin. "One Year After Solomon Islands, Scientists Learn Barrier To Earthquakes Weaker Than Expected." ScienceDaily. ScienceDaily, 7 April 2008. <www.sciencedaily.com/releases/2008/04/080402164140.htm>.
University of Texas at Austin. (2008, April 7). One Year After Solomon Islands, Scientists Learn Barrier To Earthquakes Weaker Than Expected. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2008/04/080402164140.htm
University of Texas at Austin. "One Year After Solomon Islands, Scientists Learn Barrier To Earthquakes Weaker Than Expected." ScienceDaily. www.sciencedaily.com/releases/2008/04/080402164140.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
Ivory Trade Boom Swamps Law Efforts

Ivory Trade Boom Swamps Law Efforts

Reuters - Business Video Online (Dec. 17, 2014) Demand for ivory has claimed the lives of tens of thousands of African elephants and now a conservation report says the illegal trade is overwhelming efforts to enforce the law. Amy Pollock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins