Featured Research

from universities, journals, and other organizations

Brain Tissue Could Be Regenerated After Stroke By Inserting Microscaffolding And Stem Cells, Animal Study Suggests

Date:
April 10, 2008
Source:
Biotechnology and Biological Sciences Research Council
Summary:
Inserting tiny scaffolding into the brain could dramatically reduce damage caused by strokes, according to new research. Scientists from the Institute of Psychiatry have found that combining scaffold microparticles with neural stem cells could regenerate lost brain tissue.

Inserting tiny scaffolding into the brain could dramatically reduce damage caused by strokes the UK National Stem Cell Network Annual Science Meeting will hear April 10. Speaking at the conference in Edinburgh, Dr Mike Modo from the Institute of Psychiatry will explain how combining scaffold microparticles with neural stem cells (NSCs) could regenerate lost brain tissue.

Strokes cause temporary loss of blood supply to the brain which results in areas of brain tissue dying - causing loss of bodily functions such as speech and movement. Neural Stem Cells offer exciting possibilities for tissue regeneration, but there are currently major limitations in delivering these cells to the brain. And while NSC transplantation has been proven to improve functional outcomes in rats with stroke damage little reduction in lesion volume has been observed.

However, with funding from the Biotechnology and Biological Sciences Research Council (BBSRC) neurobiologists from the Institute of Psychiatry (Dr Mike Modo & Prof Jack Price) and tissue engineers from the University of Nottingham (Prof Kevin Shakesheff) have joined forces to tackle the challenge of tissue loss as a result of stroke.

Working with rats, Dr Modo and his team are developing cell-scaffold combinations that could be injected into the brain to provide a framework inside the cavities caused by stroke so that the cells are held there until they can work their way to connect with surrounding healthy tissue.

Dr Modo explains: "We propose that using scaffold particles could support NSCs in the cavity to re-form the lost tissue and provide a more complete functional repair. The ultimate aim is to establish if this approach can provide a more efficient and effective repair process in stroke."

The team hope their work will pave the way for NSCs to be successfully used in clinical settings to re-develop parts of the brain damaged by stroke and neurodegenerative diseases.

This research is being carried out by Dr Mike Modo and Professor Jack Price from the Institute of Psychiatry and Professor Kevin Shakesheff from the University of Nottingham.

This research is being presented at the UK National Stem Cell Network Inaugural Science Meeting at the Edinburgh Conference Centre on 10 April 2008.


Story Source:

The above story is based on materials provided by Biotechnology and Biological Sciences Research Council. Note: Materials may be edited for content and length.


Cite This Page:

Biotechnology and Biological Sciences Research Council. "Brain Tissue Could Be Regenerated After Stroke By Inserting Microscaffolding And Stem Cells, Animal Study Suggests." ScienceDaily. ScienceDaily, 10 April 2008. <www.sciencedaily.com/releases/2008/04/080410080230.htm>.
Biotechnology and Biological Sciences Research Council. (2008, April 10). Brain Tissue Could Be Regenerated After Stroke By Inserting Microscaffolding And Stem Cells, Animal Study Suggests. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2008/04/080410080230.htm
Biotechnology and Biological Sciences Research Council. "Brain Tissue Could Be Regenerated After Stroke By Inserting Microscaffolding And Stem Cells, Animal Study Suggests." ScienceDaily. www.sciencedaily.com/releases/2008/04/080410080230.htm (accessed July 31, 2014).

Share This




More Mind & Brain News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dieting At A Young Age Might Lead To Harmful Health Habits

Dieting At A Young Age Might Lead To Harmful Health Habits

Newsy (July 30, 2014) Researchers say women who diet at a young age are at greater risk of developing harmful health habits, including eating disorders and alcohol abuse. Video provided by Newsy
Powered by NewsLook.com
It's Not Just Facebook: OKCupid Experiments With Users Too

It's Not Just Facebook: OKCupid Experiments With Users Too

Newsy (July 29, 2014) If you've been looking for love online, there's a chance somebody has been looking at how you're looking. Video provided by Newsy
Powered by NewsLook.com
How Your Face Can Leave A Good Or Bad First Impression

How Your Face Can Leave A Good Or Bad First Impression

Newsy (July 29, 2014) Researchers have found certain facial features can make us seem more attractive or trustworthy. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins