Featured Research

from universities, journals, and other organizations

Nervous System For Airplanes, Bridges And Other Structures Should Improve Safety

Date:
April 14, 2008
Source:
Fraunhofer-Gesellschaft
Summary:
Technical structures may soon have their own nervous system. Developers and users expect this to bring greater safety, maintenance activities only when required, and a more efficient use of material and energy. Sophisticated systems of sensors, actuators and signal processing devices detect cracks, rust and other defects at an early stage in order to prevent damage -- especially in critical places that are difficult to reach.

Technical structures will soon have their own nervous system. Developers and users expect this to bring greater safety, maintenance activities only when required, and a more efficient use of material and energy.

On average, a single square centimeter of human skin contains over 300 receptors that register pain, pressure, heat or cold. Twenty-four hours a day, these tiny sensors receive and transmit vital information about the condition of our outermost covering via a widely ramified network to the brain. An electronic network modeled on this nervous system will in future protect technical structures, from aircraft and pipelines to the rotor blades of wind turbines.

The ambitious concept bears the name of ‘Structural Health Monitoring (SHM)’. Sophisticated systems of sensors, actuators and signal processing devices detect cracks, rust and other defects at an early stage in order to prevent damage – especially in critical places that are difficult to reach. In structural status monitoring, unlike conventional test methods, the sensors are firmly attached to the structure and can monitor it constantly – even during day-to-day operation.

Several Fraunhofer institutes and various industrial partners are currently working on an SHM system that will use ultrasound to detect any damage to the technical structures of aircraft, pipelines or wind turbines. The core of the sensors used is made up of ceramic piezo fibers that convert mechanical energy into electrical impulses and vice-versa. Any piezo element can be used as either a transmitter or a receiver. It can excite the structure to produce vibrations, and it can record vibrations in the structure.

The ultrasound waves spread out in certain patterns depending on the type of structure. Cracks and other flaws alter this wave pattern in the same way as a rock changes the pattern of waves in a lake. Even a group of four piezo elements is sufficient to locate flaws accurately to the nearest centimeter – flaws that are often no more than a few millimeters in size.

“Our system is intended to supplement the checks used up to now,” says Bernhard Brunner of the Fraunhofer Institute for Silicate Research ISC, Würzburg. But that is only the first step. If the SHM systems prove successful, the researchers can envisage a status-dependent maintenance and repair system: “to save inspections and therefore time,” adds Brunner’s project partner Bernd Frankenstein of the Fraunhofer Institute for Non-Destructive Testing IZFP in Dresden. He is in no doubt that SHM systems will eventually replace conventional test methods, at least in part. The task of the Fraunhofer Institute for Structural Durability and System Reliability LBF is to create deliberate flaws in structures, which can then be detected during tests.

There are even more reasons for teaching structures to ‘feel’. It helps to make better use of valuable resources, both materials and energy. This is particularly noticeable in the aviation industry, where each gram less in the weight of the aircraft increases its potential payload as well as reducing exhaust fumes. Continuous monitoring by SHM systems is also expected to yield greater safety, particularly for equipment such as offshore wind farms that are not readily accessible.

The artificial nervous system fulfills a dual task in such cases: It monitors the structure and at the same time delivers data about occurrences in the structure during day-to-day operation. Data of this kind, which hardly existed until now, will help to optimize the next generations of components.

Researchers will present a demonstrator for monitoring wind turbines at the Hannover-Messe from April 21 to 25.

 


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Nervous System For Airplanes, Bridges And Other Structures Should Improve Safety." ScienceDaily. ScienceDaily, 14 April 2008. <www.sciencedaily.com/releases/2008/04/080411103051.htm>.
Fraunhofer-Gesellschaft. (2008, April 14). Nervous System For Airplanes, Bridges And Other Structures Should Improve Safety. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2008/04/080411103051.htm
Fraunhofer-Gesellschaft. "Nervous System For Airplanes, Bridges And Other Structures Should Improve Safety." ScienceDaily. www.sciencedaily.com/releases/2008/04/080411103051.htm (accessed April 16, 2014).

Share This



More Matter & Energy News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) — The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Ford Mustang Fetes Its 50th Atop Empire State Building

Ford Mustang Fetes Its 50th Atop Empire State Building

AFP (Apr. 16, 2014) — Ford celebrated the 50th birthday of its beloved Mustang by displaying a new model of the convertible on top of the Empire State Building in New York. Duration: 00:28 Video provided by AFP
Powered by NewsLook.com
New York Auto Show Highlights Latest in Car Tech

New York Auto Show Highlights Latest in Car Tech

AP (Apr. 16, 2014) — With more than 1 million visitors annually, the New York International Auto Show is one of the most important shows for the U.S. auto industry. This year's show featured the latest in high technology, and automotive bling. (April 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins