Featured Research

from universities, journals, and other organizations

Molecular Movies Allow Scientists To See Molecular Movements Firsthand

Date:
April 17, 2008
Source:
DOE/Argonne National Laboratory
Summary:
They may never win an Oscar, but scientists have developed techniques for creating accurate movies of biological and chemical molecules, a feat only theorized up until now. Biological and organic molecules in solution are far more complex than the standard crystalline structures of salt or metals since they are constantly moving and changing over time. These motions have not yet been seen directly, but scientists using the high intensity x-rays at the Advanced Photon Source have measured images that are "blurred" by these motions and have used them to create more accurate movies of molecular motions.

Image from the DNA animation. Scientists have developed techniques for creating accurate movies of biological and chemical molecules.
Credit: Image courtesy of DOE/Argonne National Laboratory

They may never win an Oscar, but scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory have developed techniques for creating accurate movies of biological and chemical molecules, a feat only theorized up until now.

Biological and organic molecules in solution are far more complex than the standard crystalline structures of salt or metals since they are constantly moving and changing over time. These motions have not yet been seen directly, but scientists using the high intensity x-rays at the Advanced Photon Source have measured images that are "blurred" by these motions and have used them to create more accurate movies of molecular motions.

Computer simulations are currently the only way to visualize molecular motions in solution, but researchers have not had a means to check the accuracy of these simulations for complex molecules. For the first time, scientists can see the movements first hand and compare them to their theoretical counterparts.

"The blurring that we see in our solution x-ray patterns are remarkably sensitive to the type of the molecular motion," senior chemist David Tiede said. "For the first time, we are able to test the accuracy of the simulation and change it to fit data better. Without it, we had no way of knowing how accurate the models were."

Tiede hopes an improved accuracy in molecular modeling will give insights into the structure and behavior of the molecules. Collaborators at the National Institutes of Health have used this approach to help determine structures of important biological molecules.

Tiede and his collaborators also plan to examine how a structure reacts to an outside stimulus. By using a laser to excite the atoms, he will create a movie that shows how the molecule reacts to the initial laser pulse and also how it returns to a stable condition.

"We hope to establish between 'good' and 'bad' molecular actors in important chemical processes like photosynthesis, solar energy and catalysts," Tiede said. "Once we see that, we can make these processes work better."

Funding for the research was provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

DNA animation available at: http://www.anl.gov/Media_Center/News/2008/video/DNA_MD52_ppt.gif


Story Source:

The above story is based on materials provided by DOE/Argonne National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Argonne National Laboratory. "Molecular Movies Allow Scientists To See Molecular Movements Firsthand." ScienceDaily. ScienceDaily, 17 April 2008. <www.sciencedaily.com/releases/2008/04/080415115349.htm>.
DOE/Argonne National Laboratory. (2008, April 17). Molecular Movies Allow Scientists To See Molecular Movements Firsthand. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2008/04/080415115349.htm
DOE/Argonne National Laboratory. "Molecular Movies Allow Scientists To See Molecular Movements Firsthand." ScienceDaily. www.sciencedaily.com/releases/2008/04/080415115349.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins