Featured Research

from universities, journals, and other organizations

How To Measure A Carbon Nanotube

Date:
May 1, 2008
Source:
National Institute of Standards and Technology
Summary:
NIST, in collaboration with NASA, has published detailed guidelines for making essential measurements on samples of single-walled carbon nanotubes. The new guide constitutes the current "best practices" for characterizing one of the most promising and heavily studied of the new generation of nanoscale materials.

Scanning electron microscope image of 'cleaned' carbon nanotubes at NIST (color added for clarity.)
Credit: NIST

The National Institute of Standards and Technology (NIST), in collaboration with the National Aeronautics and Space Administration (NASA), has published detailed guidelines* for making essential measurements on samples of single-walled carbon nanotubes (SWCNTs). The new guide constitutes the current "best practices" for characterizing one of the most promising and heavily studied of the new generation of nanoscale materials.

Related Articles


The nanotubes are essentially cylinders of carbon atoms with a wall only one atom thick and a diameter of a couple of nanometers--but lengths up to several million times their diameter. (Think of a soup can about 100 kilometers tall.) Because of their unique electronic, thermal, optical and mechanical properties they are being studied for a wide--and expanding--range of applications, including ultrastrong fibers for nanocomposite materials, circuit elements in molecular electronics, hydrogen storage components for fuel cells and light sources for compact, efficient flat-panel displays. One basic problem is assuring the quality and purity of SWCNT materials. All known techniques for producing these tiny tubes also produce large quantities of nanojunk: simple graphite and carbon soot often encapsulating small metal particles used to catalyze the nanotube synthesis process.

Accurate, reliable and preferably rapid measurement techniques are needed to optimize production processes to create more product and less impurities. These will help to control cleaning and purifying processes and ultimately to improve the confidence of buyers and sellers of SWCNT materials. Beginning in 2003, NIST and NASA researchers started addressing the problem by sponsoring a series of workshops devoted to nanotube measurements.

The NIST "Recommended Practice Guide" on Measurement Issues in Single Wall Carbon Nanotubes grew out of second workshop in 2005, and represents what industry, government and academic researchers regard as the most useful and accurate measurement techniques for characterizing the purity of SWCNT samples. The techniques discussed include thermogravimetric analysis; near-infrared spectroscopy; Raman spectroscopy and optical, electron and scanned probe microscopy. Researchers from the NASA Johnson Space Center, the University of California at Riverside, Boston University and the NASA Langley Research Center contributed to the guide.

The techniques described in the guide were proposed as the basis for international standards for nanotube characterization. A collaborative effort that includes the US, China, Japan, and Korea is now underway under the International Organization for Standardization (ISO) to develop these techniques into standards that will help ensure uniform characterization metrics used when buying and selling nanotubes. The editors caution that in the fast-moving field of carbon nanotubes, characterization methods will need to be updated periodically.

The NIST Recommend Practice Guides are a set of publications devoted to specific, challenging measurement issues faced in industry and research. Online copies of Measurement Issues in Single Wall Carbon Nanotubes and other guides in the series are available at The "How To Measure" Book Series.

* S. Freiman, S. Hooker, K. Migler and S. Arepalli (eds.). Measurement Issues in Single Wall Carbon Nanotubes. NIST Special Publication 960-19, March 2008.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "How To Measure A Carbon Nanotube." ScienceDaily. ScienceDaily, 1 May 2008. <www.sciencedaily.com/releases/2008/04/080415164306.htm>.
National Institute of Standards and Technology. (2008, May 1). How To Measure A Carbon Nanotube. ScienceDaily. Retrieved April 2, 2015 from www.sciencedaily.com/releases/2008/04/080415164306.htm
National Institute of Standards and Technology. "How To Measure A Carbon Nanotube." ScienceDaily. www.sciencedaily.com/releases/2008/04/080415164306.htm (accessed April 2, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, April 2, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Voice-Controlled GPS Helmet to Help Bikers

Voice-Controlled GPS Helmet to Help Bikers

Reuters - Innovations Video Online (Apr. 1, 2015) Motorcyclists will no longer have to rely on maps or GPS systems, both of which require riders to take their eyes off the road, once a new Russian smart helmet goes on sale this summer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Wound-Healing Laser Soon to Be a Reality Israeli Scientist

Wound-Healing Laser Soon to Be a Reality Israeli Scientist

Reuters - Innovations Video Online (Apr. 1, 2015) Israeli scientists says laser bonding of tissue allows much faster healing and less scarring. Amy Pollock has more. Video provided by Reuters
Powered by NewsLook.com
7-Year-Old Girl Gets 3-D Printed 'robohand'

7-Year-Old Girl Gets 3-D Printed 'robohand'

AP (Mar. 31, 2015) Although she never had much interest in prosthetic limbs before, Faith Lennox couldn&apos;t wait to slip on her new robohand. The 7-year-old, who lost part of her left arm when she was a baby, grabbed it as soon as it came off a 3-D printer. (March 31) Video provided by AP
Powered by NewsLook.com
Dutch Architects Show Off 3D House-Building Prowess

Dutch Architects Show Off 3D House-Building Prowess

Reuters - Innovations Video Online (Mar. 31, 2015) Dutch architects are constructing a 3D-printed canal-side home, which they hope will spark an environmental revolution in the house-building industry. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins