Featured Research

from universities, journals, and other organizations

Arsenic-based Therapy Shown To Help Eradicate Leukemia-initiating Cells

Date:
May 12, 2008
Source:
Beth Israel Deaconess Medical Center
Summary:
In a paradoxical discovery, scientists have found that a tumor suppressor protein known as PML appears to be the factor that enables leukemia initiating cells to maintain their quiescence -- the inert state that protects them from being destroyed by cancer therapies.

In both leukemia and solid tumors, there exists among the multitude of warrior cancer cells a small subgroup that work undercover, patiently lying in wait to launch their attacks. Known as either cancer initiating cells (CICs) or leukemia initiating cells (LICs), these stealth populations are impervious to conventional chemotherapy and undaunted by targeted cancer therapies. When a leukemia patient relapses following a period of remission, it is the LICs that bear responsibility for the disease's reemergence.

Related Articles


The secret to the survival abilities of these cells has been unclear. But in a paradoxical discovery, a research team led by investigators at Beth Israel Deaconess Medical Center (BIDMC) has found that a tumor suppressor protein known as PML appears to be the factor that enables LICs to maintain their quiescence -- the inert state that protects them from being destroyed by cancer therapies -- and suggests that inhibition of PML is a promising target for new therapeutics.

Their findings, which appear in the advance on-line issue of the journal Nature on May 12, additionally demonstrate that PML can be degraded with an arsenic-based agent used in traditional Chinese medicine. Importantly, when combined with chemotherapy, the arsenic-based therapy -- already proven safe and non-toxic in clinical trials -- can successfully treat chronic myeloid leukemia.

"Leukemia initiating cells share many properties of normal hematopoetic stem cells," explains senior author Pier Paolo Pandolfi, MD, PhD, Director of the Cancer Genetics Program in BIDMC's Cancer Center and Professor of Medicine and of Pathology at Harvard Medical School. "They are pluripotent, they readily replicate and they can indefinitely remain in a dormant state of quiescence."

Consequently, while the majority of leukemic cells are vulnerable to any cancer therapies -- including chemotherapy and targeted cancer treatments -- that destroy cells during active DNA replication, LICs, with their unique quiescent properties, resemble an automobile with an endless supply of fuel and a sturdy set of brakes: They sit quietly idling in place, waiting to reinitiate malignancy after a period of remission.

Pandolfi's laboratory has been working to develop new therapeutic approaches to target LICs and thereby treat chronic myeloid leukemia (CML), one of the most extensively investigated of stem cell disorders. CML is typically treated with the targeted therapy imatinib (Gleevec), a tyrosine kinase inhibitor.

"Gleevec does dramatically improve prognosis of CML patients," notes Pandolfi. "But, unfortunately, Gleevec is not curative in most cases. Because it targets only dividing cells, the pool of quiescent LICs are able to remain intact." As a result, when Gleevec therapy is discontinued, the cancer almost inevitably relapses.

The investigators set out to analyze expression of PML, a tumor suppressor protein that controls fundamental processes such as apoptosis, cellular proliferation and senescence. PML is commonly associated with acute promyelocytic leukemia (APL), in which it leads to the formation of a fusion protein that blocks cell differentiation.

After ascertaining that PML was highly expressed in the LICs of a CML mouse model, Pandolfi's team also determined that PML is highly expressed in blasts from CML patients and that low PML levels corresponded with patients' increased response to therapy and overall survival rates.

"We then analyzed LIC function in the absence of PML and revealed that PML has an indispensable role in maintaining LIC quiescence," he adds. "As a result, PML-deficient LICs grow exhausted over time, becoming incapable of generating CML in the transplanted animals."

Lastly, the investigators examined the impact of As2O3, an arsenic-based therapy that targets PML for degradation and is currently used for the treatment of acute promyelocytic leukemia. As predicted, inhibition of PML by As2O3 successfully disrupted LICs, increasing the efficacy of the anti-cancer therapy by sensitizing the LICs to pro-apoptopic stimuli.

"It's actually a very simple concept," says Pandolfi. "Ninety percent of existing cancer treatments are antiproliferative agents -- they target the pool of proliferative cells, leaving behind the dormant LICs.

"But in determining that PML serves to guard the LICs that have been left behind, we also discovered that if we knock out PML [through pharmacologic means], the LICs will lose their braking abilities and run out of gas, thereby commiting the fatal error of proliferation -- and exposing themselves to the deadly effects of cancer therapies."

Pandolfi's laboratory is now trying to determine whether PML exerts a similar role in the stem cells of other tissues, as well as in the cancer initiating cells of solid tumors.

"If this turn out to be the case," he adds, "the transient use of As2O3 may represent a more global strategy to target CICs in other forms of cancer."

This study was supported by grants from the National Institutes of Health.

Study coauthors include BIDMC Cancer Genetics investigators Keisuke Ito (first author), Rosa Bernardi, and Alessandro Morotti; Sahoko Matsuoka and Yasuo Ikeda of Keio University School of Medicine, Tokyo, Japan; Giuseppe Saglio of the University of Turin, Turin, Italy; Julie Teruya-Feldstein of Memorial Sloan-Kettering Cancer Center, New York, NY; and Jacalyn Rosenblatt and David Avigan of BIDMC's Division of Hematology and Oncology.


Story Source:

The above story is based on materials provided by Beth Israel Deaconess Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Beth Israel Deaconess Medical Center. "Arsenic-based Therapy Shown To Help Eradicate Leukemia-initiating Cells." ScienceDaily. ScienceDaily, 12 May 2008. <www.sciencedaily.com/releases/2008/05/080512105726.htm>.
Beth Israel Deaconess Medical Center. (2008, May 12). Arsenic-based Therapy Shown To Help Eradicate Leukemia-initiating Cells. ScienceDaily. Retrieved November 20, 2014 from www.sciencedaily.com/releases/2008/05/080512105726.htm
Beth Israel Deaconess Medical Center. "Arsenic-based Therapy Shown To Help Eradicate Leukemia-initiating Cells." ScienceDaily. www.sciencedaily.com/releases/2008/05/080512105726.htm (accessed November 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN Says It Will Scale Up Its Ebola Response

UN Says It Will Scale Up Its Ebola Response

AFP (Nov. 20, 2014) UN Resident Coordinator David McLachlan-Karr and WHO representative in the country Daniel Kertesz updated the media on the UN Ebola response on Wednesday. Duration: 00:51 Video provided by AFP
Powered by NewsLook.com
Takata Offers "sincerest Condolences" To Victims of Malfunctioning Airbag

Takata Offers "sincerest Condolences" To Victims of Malfunctioning Airbag

Reuters - US Online Video (Nov. 20, 2014) U.S. Congress hears from a victim and company officials as it holds a hearing on the safety of Takata airbags after reports of injuries. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Obesity Costs Almost As Much As War And Terrorism

Obesity Costs Almost As Much As War And Terrorism

Newsy (Nov. 20, 2014) The newest estimate of the cost of obesity is pretty jarring — $2 trillion. But how did researchers get to that number? Video provided by Newsy
Powered by NewsLook.com
Calling All Men: Here's Your Chance to Experience Labor Pains

Calling All Men: Here's Your Chance to Experience Labor Pains

Reuters - Light News Video Online (Nov. 20, 2014) Chinese hospital offers men a chance to experience the pain of child birth via electric shocks. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins