Featured Research

from universities, journals, and other organizations

The Protein NPC1 Polices Macrophage Cholesterol Traffic

Date:
May 16, 2008
Source:
Journal of Clinical Investigation
Summary:
Atherosclerosis is a disease of the arterial blood vessels that is often known as hardening of the arteries. It is caused in part by the accumulation in the artery wall of cells (mostly cells known as macrophages) that contain fats (mostly cholesterol).

Atherosclerosis is a disease of the arterial blood vessels that is often known as hardening of the arteries. It is caused in part by the accumulation in the artery wall of cells (mostly cells known as macrophages) that contain fats (mostly cholesterol).

Related Articles


Understanding how macrophages regulate the amount and type of cholesterol they contain is therefore of importance for understanding the mechanisms underlying atherosclerosis. Daniel Ory and colleagues, at the University of Washington School of Medicine, St. Louis, have now provided new insight into this, showing that the protein NPC1 is a factor protecting mice from atherosclerosis through its function as a regulator of macrophage cholesterol trafficking.

Mice lacking LDLR develop atherosclerosis when fed a high-fat diet, but when the authors manipulated these mice such that their macrophages lacked both LDLR and NPC1 they developed atherosclerosis more rapidly. The accelerated atherosclerosis in the absence of NPC1 was associated with impaired cholesterol efflux from macrophages.

Further analysis revealed that NPC1 was required for the generation of 27-hydroxycholsterol, which binds proteins known as LXRs, and for the LXR-dependent upregulation of proteins involved in cholesterol efflux. These data suggest that variation in NPC1 gene expression might affect how susceptible an individual is to developing atherosclerosis.


Story Source:

The above story is based on materials provided by Journal of Clinical Investigation. Note: Materials may be edited for content and length.


Journal Reference:

  1. Niemann-Pick C1 protects against atherosclerosis in mice via regulation of macrophage intracellular cholesterol trafficking. Journal of Clinical Investigation. May 15, 2008.

Cite This Page:

Journal of Clinical Investigation. "The Protein NPC1 Polices Macrophage Cholesterol Traffic." ScienceDaily. ScienceDaily, 16 May 2008. <www.sciencedaily.com/releases/2008/05/080516163132.htm>.
Journal of Clinical Investigation. (2008, May 16). The Protein NPC1 Polices Macrophage Cholesterol Traffic. ScienceDaily. Retrieved April 25, 2015 from www.sciencedaily.com/releases/2008/05/080516163132.htm
Journal of Clinical Investigation. "The Protein NPC1 Polices Macrophage Cholesterol Traffic." ScienceDaily. www.sciencedaily.com/releases/2008/05/080516163132.htm (accessed April 25, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, April 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

85 Killed in Niger by Meningitis Since Start of Year

85 Killed in Niger by Meningitis Since Start of Year

AFP (Apr. 24, 2015) A meningitis outbreak in Niger has killed 85 people since the start of the year prompting authorities to close schools in the capital Niamey until Monday. Video provided by AFP
Powered by NewsLook.com
C-Section Births a Trend in Brazil

C-Section Births a Trend in Brazil

AFP (Apr. 24, 2015) More than half of Brazil&apos;s babies are born via cesarean section, as mothers and doctors opt for a faster and less painful experience despite the health risks. Duration: 02:02 Video provided by AFP
Powered by NewsLook.com
Anti-Malaria Jab Hope

Anti-Malaria Jab Hope

Reuters - News Video Online (Apr. 24, 2015) The world&apos;s first anti-malaria vaccine could get the go-ahead for use in Africa from October if approved by international regulators. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com
3D Food Printing: The Meal of the Future?

3D Food Printing: The Meal of the Future?

AP (Apr. 23, 2015) Developers of 3D food printing hope the culinary technology will revolutionize the way we cook and eat. (April 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins