Featured Research

from universities, journals, and other organizations

Improved Gene Therapy Agent Is 30 Times More Efficient Than Current One

Date:
May 21, 2008
Source:
University of Florida
Summary:
Geneticists have developed a new version of the adeno-associated virus gene transfer vector. With just a small molecular change, AAV works about 30 times more efficiently at transferring genes in mice. The research is reported in the Proceedings of the National Academy of Sciences.

Replacing one amino acid on the surface of a virus that shepherds corrective genes into cells could be the breakthrough scientists have needed to make gene therapy a more viable option for treating genetic diseases such as hemophilia, University of Florida researchers say.

Reporting in the journal Proceedings of the National Academy of Sciences May 19, UF geneticists say they have developed a new version of the adeno-associated virus used in gene therapy that works about 30 times more efficiently in mice than vectors scientists currently rely on.

The discovery could be the solution to a problem that has plagued researchers and doctors using AAV as a gene therapy vector -- how to administer enough of the gene-toting virus to yield a therapeutic benefit without triggering an attack from the body's immune system, says Arun Srivastava, Ph.D., the George H. Kitzman professor of genetics and the chief of cellular and molecular therapy in the UF College of Medicine department of pediatrics.

AAV is considered ideal for gene therapy because it possesses the viral ability to infect cells yet does not lead to disease. But scientists discovered they had to administer trillions of AAV particles for the corrective gene to take root in a cell's nucleus and begin working.

"Based on our studies and those of others, it's become clear that the reason you need so much is because about half the AAV particles get stuck in the cytoplasm," said Srivastava, the senior author of the study and a member of the UF Genetics Institute. "It doesn't get to the nucleus very efficiently. The reason for that is obvious. AAV is seen by the body as an invading protein and it tries to block it."

The body mistakenly tags many AAV particles as junk proteins and sends them into cellular trash cans called proteasomes, where they are destroyed, Srivastava said. And a particular amino acid, tyrosine, is to blame.

Tyrosine has as part of its makeup a group of molecules called a hydroxyl group, which attracts phosphates in the cell. When a phosphate binds to the hydroxyl group, it sends a signal to the proteasome -- the cellular equivalent of taking the trash out to the curb.

So Srivastava and his UF College of Medicine colleagues decided to test what would happen if they took the phosphate out of the equation.

To do that, the researchers replaced tyrosine with another amino acid, phenylalanine. The two amino acids are identical except for one thing -- phenylalanine lacks the part that attracts phosphate.

"We didn't change anything except the amino acid that does not allow phosphorylation to occur," he said. "It was very simple. You can buy a kit from a company and can mutate any amino acid you want."

Tyrosine is found at seven spots on the surface of AAV, Srivastava said. The scientists created seven new vectors, replacing a different tyrosine in each one and inserting in them the gene that triggers production of the blood-clotting protein Factor IX. Patients with hemophilia B, a common form of the disease, do not naturally produce this protein.

In tissue samples and in mice, all the new vectors worked better than a commonly used version of AAV. One of the versions in particular worked 11 times better in tissue samples after 48 hours. In mice, the results were staggering. Two weeks after the mice were injected with the corrective gene, one of the new AAV-gene combos was working 29 times better than the standard vector was at incorporating the new gene into cells, at a 10-fold lower dose.

"We were very surprised," Srivastava said. "It's amazing to think that changing one amino acid could produce these results.

"Now the virus actually completely avoids being phosphorylated, so it doesn't become degraded and it goes into the nucleus, and we get therapeutic levels of proteins. We can generate therapeutic levels of Factor IX."

The researchers are creating additional new vectors based on this concept, with the goal of creating what Srivastava calls "a perfect vector" that lacks all seven phosphate-attracting tyrosines. They are also teaming with University of North Carolina researchers to test the vectors in dogs with hemophilia. If these studies are successful, the vector could be used in human gene therapy trials.

In addition to being more efficient, the new version of AAV could also prove to be more economical, Srivastava said. Current gene therapy trials are expensive because scientists must administer so much of the vector containing the therapeutic gene to see results. Using the new vector, scientists could potentially scale back to using as little as 100 billion particles instead of 10 trillion, Srivastava said.

"I think this is a very promising step forward," said John Engelhardt, Ph.D., the director of the University of Iowa Center for Gene Therapy, who was not involved with the study but also plans to use the UF-developed vector in upcoming research. "From a basic biological standpoint, this clarifies our understanding of how the virus acts in the cell. The more we understand, the better we are going to be at engineering viruses for use in humans."

The other members of the UF team that participated in this discovery include Li Zhong, M.D., Baozheng Li, B.S., Cathryn Mah, Ph.D., Lakshmanan Govindasamy, Ph.D., Mavis Agbandje-McKenna, Ph.D., Mario Cooper, B.S., Roland W. Herzog, Ph.D., Irene Zolotukhin, B.S., Kenneth H. Warrington, Jr., Ph.D., Kirsten Weigel-Van Aken, M.D., Jacqueline Hobbs, M.D., Ph.D., Sergei Zolotukhin, Ph.D., and Nicholas Muzyczka, Ph.D.


Story Source:

The above story is based on materials provided by University of Florida. Note: Materials may be edited for content and length.


Cite This Page:

University of Florida. "Improved Gene Therapy Agent Is 30 Times More Efficient Than Current One." ScienceDaily. ScienceDaily, 21 May 2008. <www.sciencedaily.com/releases/2008/05/080520090529.htm>.
University of Florida. (2008, May 21). Improved Gene Therapy Agent Is 30 Times More Efficient Than Current One. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2008/05/080520090529.htm
University of Florida. "Improved Gene Therapy Agent Is 30 Times More Efficient Than Current One." ScienceDaily. www.sciencedaily.com/releases/2008/05/080520090529.htm (accessed September 20, 2014).

Share This



More Health & Medicine News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com
How The 'Angelina Jolie Effect' Increased Cancer Screenings

How The 'Angelina Jolie Effect' Increased Cancer Screenings

Newsy (Sep. 19, 2014) Angelina's Jolie's decision to undergo a preventative mastectomy in 2013 inspired many women to seek early screenings for the disease. Video provided by Newsy
Powered by NewsLook.com
The Cost of Ebola

The Cost of Ebola

Reuters - Business Video Online (Sep. 18, 2014) As Sierra Leone prepares for a three-day "lockdown" in its latest bid to stem the spread of Ebola, Ciara Lee looks at the financial implications of fighting the largest ever outbreak of the disease. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins