Featured Research

from universities, journals, and other organizations

New Technique Allows Targeted Inactivation Of Genes In Research Model

Date:
May 28, 2008
Source:
University of Massachusetts Medical School
Summary:
A new technique improves the ability of scientists to target individual genes for inactivation -- a technique with broad potential implications for both basic science research and human disease.

Researchers at the University of Massachusetts Medical School (UMMS) report today on a new technique that improves the ability of scientists to target individual genes for inactivation—a technique with broad potential implications for both basic science research and human disease.

Two scientific teams at UMMS, one led by Scot A. Wolfe, PhD, an assistant professor in the Program in Gene Function & Expression and the Department of Biochemistry & Molecular Pharmacology, and the other by Nathan D. Lawson, PhD, an associate professor in the Program in Gene Function and Expression and the Program in Molecular Medicine, working with a small fish—the zebrafish—commonly used as a model organism in biomedical research, developed a method to create and deliver a tailor-made “restriction enzyme” that inactivates a specific gene in a zebrafish embryo.

“The best way to figure out what a gene does in an organism is to replace it with a non-functional version, breed the individual, and then look at the offspring to see what’s wrong with them,” said Laurie Tompkins, Ph.D., who oversees genetic mechanisms grants at theNational Institute of General Medical Sciences, “The problem is that it’s hard to swap in non-functional genes that are inherited by the offspring. These investigators have devised a way to do this, which will enable many scientists to answer questions that were previously out of reach.”

“We believe that this work will fundamentally change how researchers make knockouts—research organisms in which one or more genes have been genetically engineered to be turned off—in many model organisms,” said Dr. Wolfe. “In this paper, we demonstrate the feasibility of this approach for gene inactivation using the zebrafish, but we believe that this technology should be applicable to other vertebrate and non-vertebrate systems with exciting implications for the development of new models for the study of human disease.”

The collaboration between the Lawson and Wolfe laboratories merges the strengths of two different research programs to achieve important advances at the interface of their interests: the Wolfe laboratory’s focus on understanding and engineering protein-DNA recognition in zinc finger proteins and the Lawson laboratory’s interest in developing new technologies that facilitate biological studies in zebrafish to better understand development and disease.

“The zebrafish has really become quite established as a model organism in the past several years,” said Dr. Lawson. “I began using the zebrafish model to study angiogenesis because of its external development and transparent embryos – we can actually watch blood vessels as they grow in the zebrafish embryo. This allows us to gain novel insights into this process that are not easy to make in mouse models. However, we had not previously been able to directly knock out a gene of interest, an approach available in the mouse. The work we have done with the Wolfe lab will open up completely new avenues for our own research and will further strengthen the use of the zebrafish model. More significantly, this technique will now allow us to make zebrafish models that may provide insight into the progression of human vascular disease.”

This research was supported by grants from the National Heart, Lung and Blood Institute and theNational Institute of General Medical Sciences.


Story Source:

The above story is based on materials provided by University of Massachusetts Medical School. Note: Materials may be edited for content and length.


Journal Reference:

  1. Meng X et al. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nature Biotechnology, Published online: 25 May 2008

Cite This Page:

University of Massachusetts Medical School. "New Technique Allows Targeted Inactivation Of Genes In Research Model." ScienceDaily. ScienceDaily, 28 May 2008. <www.sciencedaily.com/releases/2008/05/080527101044.htm>.
University of Massachusetts Medical School. (2008, May 28). New Technique Allows Targeted Inactivation Of Genes In Research Model. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2008/05/080527101044.htm
University of Massachusetts Medical School. "New Technique Allows Targeted Inactivation Of Genes In Research Model." ScienceDaily. www.sciencedaily.com/releases/2008/05/080527101044.htm (accessed April 20, 2014).

Share This



More Plants & Animals News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins