Featured Research

from universities, journals, and other organizations

Healthy Parents Provide Clues To Survival Of Young Haddock On Georges Bank

Date:
May 31, 2008
Source:
NOAA National Marine Fisheries Service
Summary:
In 2003, haddock on Georges Bank experienced the largest baby boom ever documented for the stock, with an estimated 800 million new young fish entering the population. With typical annual averages of 50 to 100 million new fish in the last few decades, fisheries biologists have been puzzled by the huge increase and its ramifications for stock management. They have been looking for answers and may have found one -- healthy adults.

Scientific crew sorts haddock during the NEFSC autumn bottom trawl survey cruise aboard the NOAA research vessel Albatross IV in 2003.
Credit: NOAA

In 2003, haddock on Georges Bank experienced the largest baby boom ever documented for the stock, with an estimated 800 million new young fish entering the population. With typical annual averages of 50 to 100 million new fish in the last few decades, fisheries biologists have been puzzled by the huge increase and its ramifications for stock management. They have been looking for answers and may have found one - healthy adults.

Related Articles


In a study to be published in the June issue of the Canadian Journal of Fisheries and Aquatic Sciences, Dr. Kevin Friedland and colleagues from NOAA’s National Marine Fisheries Service and the University of Massachusetts suggest that the successful 2003 recruitment year is related to the fall phytoplankton bloom the year before spawning, and to the condition of the adult haddock. Phytoplankton, microscopic marine plants, form the basis of the ocean food web, and are the main source of food for many fish and other animals in the ocean. The fall 2002 bloom was significant, providing a larger than usual source of food for the ecosystem.

“Simply put, having more food to eat gives adult haddock a chance to get into better physical shape to reproduce healthy offspring with a higher chance of survival,” says Friedland, a research scientist at NOAA Fisheries’ Northeast Fisheries Science Center. “We reviewed the commonly applied factors that control recruitment, and found that the fall phytoplankton bloom the year before seems to link parental condition with a good recruitment. We call this new approach the parental condition hypothesis.”

The researchers analyzed various factors that control recruitment, from egg and larval retention, feeding conditions for larvae, size of juveniles in the fall and their estimated hatch dates, prey and time of spawning to circulation patterns and the timing and size of spring and fall phytoplankton blooms. They found that the fall phytoplankton bloom the year prior to spawning and its affect on the condition of adults to be the best supported hypothesis.

Their study suggests that the condition of the adult haddock not only leads to an improved chance to reproduce, but that the adults will produce more eggs of higher quality with higher fertilization rates. Those factors in turn will produce more abundant, larger and potentially better-conditioned offspring with a higher probability of survival to adulthood, which can significantly affect haddock stocks.

Georges Bank haddock have been heavily fished by domestic and foreign fleets over the past 50 years, with shifting patterns of fishery yieldsthat are largely dependent on successful recruitment events. The paradigm that processes affecting mortality during the early life stages determine recruitment has guided research on Georges Bank for decades, with many recent studies suggesting that the formation of each incoming year class of new fish is driven by differing sets of external environmental factors ranging from climate change patterns like the North Atlantic Oscillation to timing of spawning and the feeding environment.

Friedland and colleagues suggest a new paradigm, that the condition of parents affects egg size and fertilization success through the most difficult growth-mortality period early in the haddock life cycle. The bottom line: the number and quality of offspring is more important than the external environmental factors that occur after spawning.

“We need to be able to explain extreme recruitment events for species like haddock, where recruitment is typified by highly unusual circumstances like that in 2003,” Friedland says. “Factors that may be responsible for these large recruitments will help dictate how the haddock resource on Georges Bank is utilized and conserved. This new hypothesis needs to be tested, but it seems to be the only one that explains the 2003 record year class. If it proves true, the implications could be significant.”


Story Source:

The above story is based on materials provided by NOAA National Marine Fisheries Service. Note: Materials may be edited for content and length.


Cite This Page:

NOAA National Marine Fisheries Service. "Healthy Parents Provide Clues To Survival Of Young Haddock On Georges Bank." ScienceDaily. ScienceDaily, 31 May 2008. <www.sciencedaily.com/releases/2008/05/080527155450.htm>.
NOAA National Marine Fisheries Service. (2008, May 31). Healthy Parents Provide Clues To Survival Of Young Haddock On Georges Bank. ScienceDaily. Retrieved November 21, 2014 from www.sciencedaily.com/releases/2008/05/080527155450.htm
NOAA National Marine Fisheries Service. "Healthy Parents Provide Clues To Survival Of Young Haddock On Georges Bank." ScienceDaily. www.sciencedaily.com/releases/2008/05/080527155450.htm (accessed November 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com
Your Complicated Job Might Keep Your Brain Young

Your Complicated Job Might Keep Your Brain Young

Newsy (Nov. 20, 2014) Researchers at the University of Edinburgh found the more complex your job is, the sharper your cognitive skills will likely be as you age. Video provided by Newsy
Powered by NewsLook.com
Mysterious Glow Worms Found in the Amazon

Mysterious Glow Worms Found in the Amazon

Buzz60 (Nov. 20, 2014) Wildlife photographer Jeff Cremer teamed up with entomologist Aaron Pomerantz and others to investigate a predatory glow worm found in the Amazon. Patrick Jones (@Patrick_E_Jones) explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins