Featured Research

from universities, journals, and other organizations

Potential Tool For Selectively Manipulating Electron Spins In New Technologies Arises Unexpectedly

Date:
June 1, 2008
Source:
University of Oregon
Summary:
Researchers trying to flip the spin of electrons with laser bursts lasting picoseconds (a trillionth of a second) instead found a way to manipulate and control the spin -- knowledge that may prove useful in a variety of new materials and technologies.

UO doctoral student Shannon O'Leary found a possible tool to manipulate electron spins.
Credit: University of Oregon

University of Oregon researchers trying to flip the spin of electrons with laser bursts lasting picoseconds (a trillionth of a second) instead found a way to manipulate and control the spin -- knowledge that may prove useful in a variety of new materials and technologies.

Physicists in recent years have been pursuing a variety of routes to tap electron spins for their potential use in quantum computers that can perform millions of computations at a time and store immense quantities of data or for use in emerging optic devices or spintronics.

"Spin is another dimension of electrons," said Hailin Wang, a professor of physics at the UO. "The electronics industry has depended on electron charges for more than 50 years. To make major improvements, we now need to go beyond charges to spin, which has been very important in physics but not used very often in applications."

Wang and his doctoral student Shannon O'Leary theorized that they could flip an electron's spin up to down, or vice versa, by using a nonlinear optical technique called transient differential transmission. They describe their "failure" to flip the spin and their unexpected discovery in Physical Review B, a journal devoted to condensed matter and materials physics.

The overall goal, Wang and O'Leary said, is to be able to force the spin to flip using light. Their studies involved the use of nonlinear optical processes of electron spin coherence in a modulation-doped CdTe quantum well -- semiconductor material formed from cadmium and tellurium, sandwiched in a crystalline compound between two other semiconductor barrier layers. A doped quantum well contains extra embedded electrons in a near two-dimensional state.

O'Leary initialized a spin in an experiment using a "gyro-like" arrangement with a short pulse of laser. At specific times, she hit the spin with another laser pulse with the absorption energy of an exciton (an electron-hole pair) or trion (a charged exciton). Hitting the spin with a third pulse allows them to study what impact the second pulse had on the spin.

"We know that in this particular system, excitons quickly convert into trions by binding to a free electron," O'Leary said. "One surprising aspect is that injecting trions directly does not manipulate the spin. So the manipulation effect has to do with the conversion of the excitons to trions."

The behaviors they discovered were unexpected but intriguing, Wang said. "We were not able to flip the spin, but what we found is something quite puzzling, quite unexpected, that was not supposed to happen. We now want to understand why the system works this way. This will require some more work. We wanted to get from point A to B, but we went to C."

The detour, however, "shows that we can manipulate the spin when we inject excitons at appropriate times in the precession cycle of the spin," O'Leary said. "The result gives scientists a new tool for manipulating spins, and it may prove to be a handy method because it simply requires shining a pulse of light of the appropriate energy at the right time."

The National Science Foundation and Army Research Office funded the research.


Story Source:

The above story is based on materials provided by University of Oregon. Note: Materials may be edited for content and length.


Cite This Page:

University of Oregon. "Potential Tool For Selectively Manipulating Electron Spins In New Technologies Arises Unexpectedly." ScienceDaily. ScienceDaily, 1 June 2008. <www.sciencedaily.com/releases/2008/05/080528095901.htm>.
University of Oregon. (2008, June 1). Potential Tool For Selectively Manipulating Electron Spins In New Technologies Arises Unexpectedly. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2008/05/080528095901.htm
University of Oregon. "Potential Tool For Selectively Manipulating Electron Spins In New Technologies Arises Unexpectedly." ScienceDaily. www.sciencedaily.com/releases/2008/05/080528095901.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins