Featured Research

from universities, journals, and other organizations

Organic Corn: Increasing Rotation Complexity Increases Yields Substantially

Date:
June 1, 2008
Source:
American Society of Agronomy
Summary:
Researchers investigated the impact of increasing crop rotation length and complexity on crop yields in organic agricultural systems over a ten year period. They found that longer, more complex rotations using corn, soybean, wheat, and hay offered up to 30 percent greater corn yield than a simple corn-soybean rotation. The additional crop variety and rotation time helps provide adequate nitrogen and decrease weed competition, thereby increasing production.

Researchers investigated the impact of increasing crop rotation length and complexity on crop yields in organic agricultural systems over a ten year period. They found that longer, more complex rotations using corn, soybean, wheat, and hay offered up to 30 percent greater corn yield than a simple corn-soybean rotation.
Credit: iStockphoto/Tomas Bercic

Researchers investigated the impact of increasing crop rotation length and complexity on crop yields in organic agricultural systems over a ten year period. They found that longer, more complex rotations using corn, soybean, wheat, and hay offered up to 30 percent greater corn yield than a simple corn-soybean rotation. The additional crop variety and rotation time helps provide adequate nitrogen and decrease weed competition, thereby increasing production.

Related Articles


While demand for organic meat and milk is increasing by about 20% per year in the United States, almost all organic grain and forage to support these industries in the mid-Atlantic region is imported from other regions. To meet this demand locally, area farmers need information on expected crop yields and effective management options.

Scientists in the Sustainable Agricultural Systems Laboratory at the USDA-Agricultural Research Service (ARS) Beltsville Agricultural Research Center (BARC) in Maryland have studied the impact of diverse organic cropping systems on crop yields over a ten year period.

The researchers collected data on crop yields, nitrogen inputs, weed densities, and crop populations from the USDA-ARS Beltsville Farming Systems Project (FSP), a long-term cropping systems trial with two conventional and three organic systems that was established in 1996. The three organic systems differed in crop rotation length and complexity.

The study revealed that corn and soybean yields in organic systems were, on average, 76 and 82%, respectively, of those in conventional systems in years with normal weather. Winter wheat yields were similar among systems. Corn yields were lower in the organic than in the conventional systems primarily due to lower nitrogen availability in the organic systems, which rely on legume crops and animal manures. Weed competition also contributed to lower corn grain yields in organic systems. For soybean, weed competition alone accounted for differences in yield between organic and conventional systems.

Among organic systems crop rotation length and complexity had a strong impact on corn grain yield. A crop rotation that included corn, soybean, wheat and hay resulted in average corn grain yield 30% greater than in a simple corn-soybean rotation and 10% greater than in a corn-soybean-wheat rotation. Differences were due to increased nitrogen availability and lowered weed competition with increasing crop rotation length and complexity. Crop rotation length and complexity did not affect soybean and wheat yields.

Dr. Michel Cavigelli, lead author of the study, stated, "These research results show that longer, more complex crop rotations can help address the two most important production challenges in organic grain crop production: providing adequate nitrogen for crop needs and decreasing weed competition." This research should help organic farmers and those considering transitioning to organic farming select crop rotations best suited for the mid-Atlantic region. Since the FSP is one of only a handful of long-term cropping systems trials that includes diverse organic crop rotations, these results will also be of interest to organic farmers and those working with organic farmers nationwide.

Ongoing research at the USDA-ARS Sustainable Agricultural Systems Lab at BARC is designed to increase soil nitrogen availability and decrease weed pressure in organic grain crop rotations.

The study was funded by USDA-ARS.


Story Source:

The above story is based on materials provided by American Society of Agronomy. Note: Materials may be edited for content and length.


Journal Reference:

  1. Cavigelli, Michel A., Teasdale, John R., Conklin, Anne E. . Long-Term Agronomic Performance of Organic and Conventional Field Crops in the Mid-Atlantic Region. Agron J, 2008 100: 785-794 DOI: 10.2134/agronj2006.0373

Cite This Page:

American Society of Agronomy. "Organic Corn: Increasing Rotation Complexity Increases Yields Substantially." ScienceDaily. ScienceDaily, 1 June 2008. <www.sciencedaily.com/releases/2008/05/080528102904.htm>.
American Society of Agronomy. (2008, June 1). Organic Corn: Increasing Rotation Complexity Increases Yields Substantially. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2008/05/080528102904.htm
American Society of Agronomy. "Organic Corn: Increasing Rotation Complexity Increases Yields Substantially." ScienceDaily. www.sciencedaily.com/releases/2008/05/080528102904.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins