Featured Research

from universities, journals, and other organizations

New Method Developed To Weigh, Resolve Distant Black Holes

Date:
June 5, 2008
Source:
University of Arkansas at Little Rock
Summary:
A new, simple method to learn about black holes up to eight billion light years away -- thousands of times farther away than black holes can be measured today -- has been developed. Astronomers and physicists have concluded that the larger the black hole at the center of a spiral galaxy, the tighter the galaxy's arms wrap around itself. If correct, the simple relationship would give researchers an easy way to learn about black holes.

Andromeda galaxy.
Credit: Chaco Culture NHP Observatory

Research presented to the American Astronomical Society meeting in St. Louis June 2 offers astronomers a new, simple method to learn about black holes up to eight billion light years away – thousands of times farther away than black holes can be measured today.

Related Articles


Dr. Marc Seigar, assistant professor of physics and astronomy in the College of Science and Math at the University of Arkansas at Little Rock, and his research team have concluded that the larger the black hole at the center of a spiral galaxy, the tighter the galaxy’s arms wrap around itself. If correct, the simple relationship would give researchers an easy way to learn about black holes.

“This is a really easy way to determine the masses of these super-massive black holes at the centers of galaxies that are very far away,” Seigar said. “This gives us a way to measure the size of these far away black holes.”

Since super-massive black holes were discovered in nearby galaxies, researchers have been determining their masses by looking at how fast the stars were moving in the very central regions of those galaxies. But that method only works for relatively nearby galaxies, Seigar said.

“For more distant galaxies out to the distances we’re talking about, you have to develop alternative methods,” Seigar said. “And we have developed such a method.”

The method he described to the Astronomical Society involves taking a snapshot of a distant galaxy and measuring how tightly the spiral arms wrap around the galaxy, or the wrapping angle. He determined that the more massive the black hole, the tighter the spiral arms wrap around the galaxy, which indicates a small wrapping angle.

Seigar’s team studied photographs of 27 spiral galaxies, including our galaxy, the Milky Way, and its nearest neighbor, the Andromeda Galaxy. Galaxies with the smallest black holes had spiral arms with wrapping angles of up to 43 degrees. Those with biggest black holes had spiral arms at angles of only seven degrees between their central bulges.

“One of the important reasons to learn about the every distant black holes is, when you are looking at galaxies very far away, you are looking at them as they were in the past, so you can learn about how masses of black holes grow over time, ” Seigar said.

The black holes he is studying are super-massive black holes that are millions or billions times more massive than our sun. Since they seem to be found at the centers of all galaxies, they could be a key element of how galaxies form in the first place.

His studies also indicate that the mass of a black hole may depend on how centrally concentrated the dark matter is in a galaxy. “But that is a hypothesis that has yet to be proven,” he said. “We’re going to work on that.”

Seigar joined UALR’s faculty in 2007 following a stint as an assistant project scientist and McCue Fellow at the University of California-Irvine. His other experience includes postdoctoral research associate at the University of California-Irvine, adjunct professor at the University of Hawaii-Hilo, postdoctoral research associate at the University of London’s Imperial College and at Ghent University in Belgium. He also was a visiting astronomer at the Space Telescope Science Institute.

Seigar, who earned a Ph.D. in astrophysics at John Moores University in Liverpool, teaches Introduction to Astronomy at UALR as well as performing research in the structure, dynamics and star formation in spiral galaxies, and the nature of intracluster light in clusters of galaxies.

“Since my thesis I have been interested in the overall structure, morphology and dynamics of nearby galaxies, especially disk galaxies,” Seigar said.

He is involved in the Carnegie-Irvine Nearby Galaxies Survey (CINGS), a comprehensive optical and infrared imaging survey of the 600 brightest galaxies in the southern-hemisphere sky, being carried out at the 2.5-meter Du Pont telescope at Las Campanas Observatory. He is also involved in the Arkansas Galaxy Evolution Survey (AGES), part of which is to conduct a census of super-massive black holes in the universe.


Story Source:

The above story is based on materials provided by University of Arkansas at Little Rock. Note: Materials may be edited for content and length.


Cite This Page:

University of Arkansas at Little Rock. "New Method Developed To Weigh, Resolve Distant Black Holes." ScienceDaily. ScienceDaily, 5 June 2008. <www.sciencedaily.com/releases/2008/06/080602230155.htm>.
University of Arkansas at Little Rock. (2008, June 5). New Method Developed To Weigh, Resolve Distant Black Holes. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2008/06/080602230155.htm
University of Arkansas at Little Rock. "New Method Developed To Weigh, Resolve Distant Black Holes." ScienceDaily. www.sciencedaily.com/releases/2008/06/080602230155.htm (accessed October 31, 2014).

Share This



More Space & Time News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Antares Liftoff Explosion

Raw: Antares Liftoff Explosion

AP (Oct. 29, 2014) Observers near Wallops Island recorded what they thought would be a routine rocket launch Tuesday night. What they recorded was a major rocket explosion shortly after lift off. (Oct 29) Video provided by AP
Powered by NewsLook.com
Raw: Russian Cargo Ship Docks at Space Station

Raw: Russian Cargo Ship Docks at Space Station

AP (Oct. 29, 2014) Just hours after an American cargo run to the International Space Station ended in flames, a Russian supply ship has arrived at the station with a load of fresh supplies. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Journalist Captures Moment of Antares Rocket Explosion

Journalist Captures Moment of Antares Rocket Explosion

Reuters - US Online Video (Oct. 29, 2014) A space education journalist is among those who witness and record the explosion of an unmanned Antares rocket seconds after its launch. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Rocket Explosion Under Investigation

Rocket Explosion Under Investigation

AP (Oct. 28, 2014) NASA and Orbital Sciences officials say they are investigating the explosion of an unmanned commercial supply rocket bound for the International Space Station. It blew up moments after liftoff Tuesday evening over the launch site in Virginia. (Oct. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins