Featured Research

from universities, journals, and other organizations

Need MicroRNA Processing? Get Smad

Date:
June 11, 2008
Source:
Tufts University, Health Sciences
Summary:
In a study published in Nature, researchers report that Smad proteins regulate microRNA processing. Understanding the role of Smad proteins enables researchers to investigate abnormal miRNA processing, a contributing factor in the development of cardiovascular disorders and cancer.

Researchers at Tufts University School of Medicine and Tufts Medical Center have found that Smad proteins regulate microRNA (miRNA) processing. Understanding the role of Smad proteins enables researchers to investigate abnormal miRNA processing which is a contributing factor in development of cardiovascular disorders and cancer. The study was published online today in Nature.

"We found that Smad proteins, the signal carriers of a group of proteins that help regulate cells, promote the processing of a subset of microRNA, including miR-21. Smad proteins control the processing of miRNA from a primary copy of RNA (pri-miRNA) to precursor miRNA (pre-miRNA)," explains corresponding and senior author Akiko Hata, PhD, assistant professor at Tufts University School of Medicine and a member of the biochemistry program faculty at the Sackler School of Graduate Biomedical Sciences. "Smad proteins move to the nucleus of the cell and interact with a specific complex, called the Drosha microprocessor complex, to promote the processing of pri-miR-21 to pre-miR-21, eventually leading to an increase in mature miR-21 levels."

"Mature miR-21 targets a tumor suppressor gene important for programmed cell death in both cancer cells and in smooth muscle cells, the cells that help our veins and arteries contract and relax," contextualizes Brandi Davis, first author, and PhD candidate in the department of biochemistry at Tufts University School of Medicine. "Abnormal miRNA processing is a contributing factor in cardiovascular disorders and cancer, yet little is known about its regulation."

Hata, Davis and colleagues designed a series of experiments to determine how members of a super-family of growth factors, called the transforming growth factor ² (TGF²) family, which is a group of proteins that help regulate cellular functions, can cause miRNA levels to increase. By exposing cells to members of the TGF² family, the researchers were able to observe that, over time, levels of pre-miR-21 and mature miR-21 increased, while levels of pri-miR-21 did not change. "Since pri-miR-21 levels did not change, we concluded that the TGF² family of growth factors doesn't begin to play a role in miRNA processing until the pri-miRNA to pre-miRNA step," explains Hata, who is also an investigator in the Molecular Cardiology Research Institute (MCRI) at Tufts Medical Center.

"Smad proteins were thought to act exclusively by regulating the transcription of DNA into messenger RNA (mRNA) in response to TGF² signaling. This finding reveals a new role of Smad proteins as regulators of miRNA processing," comments Giorgio Lagna, PhD, co-author, investigator in the MCRI at Tufts Medical Center and also an assistant professor at Tufts University School of Medicine. "If we want to generate a drug that regulates signaling by TGF², we now have the option to target different pathways downstream of TGF² and achieve much more specific outcomes."

MiRNAs are small gene products that regulate gene expression by interaction with mRNA. The role of mRNA in a cell is to carry the instructions for making proteins from the DNA in the nucleus to another part of the cell where the instructions are carried out and the proteins are made. "Thus, cells with abnormal miRNA levels may have abnormal protein levels, putting the organism at risk for many diseases including cancer and cardiovascular disorders. More research needs to be done to elucidate further the roles of miR-21 and other miRNA molecules," explains Hata "because better understanding of how miRNAs effect disease may lead to a clearer understanding of disease initiation and progression."

This work was supported by the National Heart, Lung, and Blood Institute and the Eunice Kennedy Shriver National Institute of Child Health and Human Development, both institutes of the National Institutes of Health.


Story Source:

The above story is based on materials provided by Tufts University, Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature, Advance Online Publication, June 11, 2008 [link]

Cite This Page:

Tufts University, Health Sciences. "Need MicroRNA Processing? Get Smad." ScienceDaily. ScienceDaily, 11 June 2008. <www.sciencedaily.com/releases/2008/06/080611135112.htm>.
Tufts University, Health Sciences. (2008, June 11). Need MicroRNA Processing? Get Smad. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2008/06/080611135112.htm
Tufts University, Health Sciences. "Need MicroRNA Processing? Get Smad." ScienceDaily. www.sciencedaily.com/releases/2008/06/080611135112.htm (accessed August 28, 2014).

Share This




More Plants & Animals News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) — State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Raw: Australian Sheep Gets Long Overdue Haircut

Raw: Australian Sheep Gets Long Overdue Haircut

AP (Aug. 28, 2014) — Hoping to break the record for world's wooliest, Shaun the sheep came up 10 pounds shy with his fleece weighing over 50 pounds after being shorn for the first time in years. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Minds Blown: Scientists Develop Fish That Walk On Land

Minds Blown: Scientists Develop Fish That Walk On Land

Newsy (Aug. 28, 2014) — Canadian scientists looking into the very first land animals took a fish out of water and forced it to walk. Video provided by Newsy
Powered by NewsLook.com
Fake Dogs Scare Real Geese from Wis. Park

Fake Dogs Scare Real Geese from Wis. Park

AP (Aug. 28, 2014) — Parks officials in Stevens Point, Wisconsin had a fowl problem. Canadian Geese were making a mess of a park, so officials enlisted cardboard versions of man's best friend. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins