Featured Research

from universities, journals, and other organizations

Boon To Drug Discovery: Interactions Within Membrane Complexes Can Be Maintained In Vacuum Of Mass Spectrometer

Date:
June 13, 2008
Source:
University of Cambridge
Summary:
Against currently held dogma, scientists have revealed that the interactions within membrane complexes can be maintained intact in the vacuum of a mass spectrometer. Their research is published in Science Express. The researchers were surprised to discover that membrane complexes could remain associated as it has always been assumed that they would not survive once transferred to the alien conditions inside the mass spectrometer. This new finding will enable scientists to investigate membrane complexes with from a variety of sources and with a range of small molecules. Since about 60% of all drug targets are membrane proteins this is a significant discovery.

Against currently held dogma, scientists at the Universities of Cambridge and Bristol have revealed that the interactions within membrane complexes can be maintained intact in the vacuum of a mass spectrometer. Their research was recently published in Science Express.

The researchers were surprised to discover that membrane complexes could remain associated as it has always been assumed that they would not survive once transferred to the alien conditions inside the mass spectrometer.

"Even if interactions between proteins within the membrane could be maintained we would not have expected them to remain associated with proteins in the cell's interior," says Carol Robinson, Principal Investigator and Royal Society Research Professor at the University of Cambridge's Department of Chemistry.

Cellular membranes surround cells and provide the ultimate in cellular security; nothing can get into a cell without the say so of membrane proteins -- the worker molecules that reside in the membrane wall and provide tightly regulated entry points. This natural home of membrane proteins excludes water, yet methods available to study proteins at high resolution revolve round aqueous environments. The ability to "fly" intact membrane proteins in a mass spectrometer paves the way for weighing the proteins and identifying the molecular partners they work with in nature.

The new research, funded by the Biotechnology and Biological Sciences Research Council, will enable scientists to investigate membrane complexes with from a variety of sources and with a range of small molecules. Since about 60% of all drug targets are membrane proteins this is a significant discovery.

Ever since Professor Robinson first flew soluble protein complexes in a mass spectrometer in 1996, she has wanted to do the same with membrane complexes. Collaborating with a membrane biochemistry group in Bristol, led by Professor Paula Booth, she began to think of ways of studying these most challenging assemblies.

Dr Nelson Barrera a post-doctoral researcher in Chile, though experienced in membrane biochemistry, was a new recruit to mass spectrometry. He was largely unaware of the difficulties that had previously been encountered and approached the problem in a new way. Rather than trying to remove the detergent (used to keep the protein intact in solution once outside the natural membrane) he maintained the detergent in unusually high amounts. He then deliberately destroyed this protective detergent layer once in the gas phase. This allowed him to liberate the intact assembly. He was also able to remove units from the modular assembly in the gas phase, just as in solution.

Professor Robinson adds: "I am very excited by this finding given the importance of membrane complexes in guarding the entrance and exit to cells. The type of proteins we have been studying, for example, are involved in drug resistance in cancer cells and antibiotic resistance of bacteria.

"I look forward to exploiting this discovery to the full; not only in characterising the many membrane complexes for which controversy exists but also in discovering new assemblies and in investigating the potential of this approach in drug discovery."

Professor Paula Booth, at the University of Bristol added: "This is a major advance that helps us understand how nature constructs cellular life. The membrane wall of cells is a precision-made, complex and highly regulated structure. We are now much better equipped to understand this incredible, natural self-assembly feat."

Journal reference: 'Micelles protect membrane complexes from solution to gas phase' will be published in the 12 June 2008 edition of Science Express.


Story Source:

The above story is based on materials provided by University of Cambridge. Note: Materials may be edited for content and length.


Cite This Page:

University of Cambridge. "Boon To Drug Discovery: Interactions Within Membrane Complexes Can Be Maintained In Vacuum Of Mass Spectrometer." ScienceDaily. ScienceDaily, 13 June 2008. <www.sciencedaily.com/releases/2008/06/080612141351.htm>.
University of Cambridge. (2008, June 13). Boon To Drug Discovery: Interactions Within Membrane Complexes Can Be Maintained In Vacuum Of Mass Spectrometer. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2008/06/080612141351.htm
University of Cambridge. "Boon To Drug Discovery: Interactions Within Membrane Complexes Can Be Maintained In Vacuum Of Mass Spectrometer." ScienceDaily. www.sciencedaily.com/releases/2008/06/080612141351.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins