Featured Research

from universities, journals, and other organizations

Coats Of Cellulose From Bacteria Yield Greener, Stronger Natural Composites

Date:
June 20, 2008
Source:
American Chemical Society
Summary:
Researchers report the first use of bacteria to deposit sticky coatings of cellulose on the surfaces of plant fibers, a process that may expand the use of natural fibers in renewable plastic composites used as strong, lightweight materials for cars, airplanes, and other products.

Researchers report a new method of depositing bacterial cellulose on plant fibers to enhance durability and strength of composite materials.
Credit: Courtesy of American Chemical Society

Researchers in the United Kingdom report the first use of bacteria to deposit sticky coatings of cellulose on the surfaces of plant fibers, a process that may expand the use of natural fibers in renewable plastic composites used as strong, lightweight materials for cars, airplanes, and other products.

The coated fibers provide strength and will make composites more durable without affecting their biodegradability. They are more suitable for recycling (or compositing) than commonly used petroleum-based composites, the researchers say.

In the new study, Alexander Bismarck and colleagues point out that synthetic composite materials now in use are made from nonrenewable, petroleum sources which are becoming more expensive. These materials not only are difficult to break down, they also create environmental hazards when disposed. Existing composites made from natural fibers show poor adhesion qualities and must be strengthened by using other synthetic coupling agents, some of which are toxic, the researchers note.

The researchers coated hemp and sisal fibers with nano-sized particles of bacterial cellulose through a special fermentation process. The coated sisal fibers showed much better adhesion properties than the original fibers without losing their mechanical properties, ideal properties for their use in composites, the researchers say. The modified hemp fibers also had improved adhesion properties but showed a loss of strength, they note.


Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alexander Bismarck et al. Surface Modification of Natural Fibers Using Bacteria: Depositing Bacterial Cellulose onto Natural Fibers To Create Hierarchical Fiber Reinforced Nanocomposites. Biomacromolecules, June, 2008 DOI: 10.1021/bm800169g

Cite This Page:

American Chemical Society. "Coats Of Cellulose From Bacteria Yield Greener, Stronger Natural Composites." ScienceDaily. ScienceDaily, 20 June 2008. <www.sciencedaily.com/releases/2008/06/080616091602.htm>.
American Chemical Society. (2008, June 20). Coats Of Cellulose From Bacteria Yield Greener, Stronger Natural Composites. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2008/06/080616091602.htm
American Chemical Society. "Coats Of Cellulose From Bacteria Yield Greener, Stronger Natural Composites." ScienceDaily. www.sciencedaily.com/releases/2008/06/080616091602.htm (accessed August 23, 2014).

Share This




More Matter & Energy News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is It a Plane? No, It's a Hoverbike

Is It a Plane? No, It's a Hoverbike

Reuters - Business Video Online (Aug. 22, 2014) UK-based Malloy Aeronautics is preparing to test a manned quadcopter capable of out-manouvering a helicopter and presenting a new paradigm for aerial vehicles. A 1/3-sized scale model is already gaining popularity with drone enthusiasts around the world, with the full-sized manned model expected to take flight in the near future. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Coal Gas Boom in China Holds Climate Risks

Coal Gas Boom in China Holds Climate Risks

AP (Aug. 22, 2014) China's energy revolution could do more harm than good for the environment, despite the country's commitment to reducing pollution and curbing its carbon emissions. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Newsy (Aug. 21, 2014) Researchers found the scanners could be duped simply by placing a weapon off to the side of the body or encasing it under a plastic shield. Video provided by Newsy
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins