Featured Research

from universities, journals, and other organizations

Slimmer Milky Way Galaxy Revealed By New Measurements

Date:
June 19, 2008
Source:
Penn State
Summary:
The Milky Way Galaxy has lost weight. A lot of weight. About a trillion Suns' worth, according to an international team of scientists from the Sloan Digital Sky Survey (SDSS-II), whose discovery has broad implications for our understanding of the Milky Way.

Researchers from the Sloan Digital Sky Survey (SDSS-II) have used the motions of distant stars to measure the mass of the Milky Way galaxy. The new mass determination is based on the measured motions of 2,400 "blue horizontal branch" stars in the extended stellar halo that surrounds the disk. These measurements reach distances of nearly 200,000 light years from the Galactic center, roughly the edge of the region illustrated above. Our Sun lies about 25,000 light years from the center of the Galaxy, roughly halfway out in the Galactic disk. The visible, stellar part of our Milky Way in the middle is embedded into its much more massive and more extended dark matter halo, indicated in dim red. The 'blue horizontal branch stars' that were found and measured in the SDSS-II study are orbiting our Milky Way at large distances. From the speeds of these stars, the researchers were able to estimate much better the mass of the Milky Way's dark-matter halo, which they found to be much 'slimmer' than thought before.
Credit: Axel Quetz, Max Planck Institute for Astrophysics (Heidelberg), SDSS-II Collaboration

The Milky Way Galaxy has lost weight. A lot of weight. About a trillion Suns' worth, according to an international team of scientists from the Sloan Digital Sky Survey (SDSS-II), whose discovery has broad implications for our understanding of the Milky Way.

"The Galaxy is slimmer than we thought," said Xiangxiang Xue of the Max Planck Institute for Astronomy in Germany and the National Astronomical Observatories of China, who led the international team of researchers. "We were quite surprised by this result," said Donald Schneider, a member of the research team, a Distinguished Professor of Astronomy at Penn State, and a leader in the SDSS-II organization. The researchers explained that it wasn't a Galactic diet that accounted for the galaxy's recent slimming, but a more accurate scale.

The discovery is based on data from the project known as SEGUE (Sloan Extension for Galactic Understanding and Exploration), an enormous survey of stars in the Milky Way and one of the three programs that comprise SDSS-II. Using SEGUE measurements of stellar velocities in the outer Milky Way, a region known as the stellar halo, the researchers determined the mass of the Galaxy by inferring the amount of gravity required to keep the stars in orbit. Some of that gravity comes from the Milky Way stars themselves, but most of it comes from an extended distribution of invisible dark matter, whose nature is still not fully understood.

To trace the mass distribution of the Galaxy, the SEGUE team used a carefully constructed sample of 2,400 "blue-horizontal-branch" stars whose distances can be determined from their measured brightness. Blue-horizontal-branch stars can be seen at large distances, Xue explained, enabling the team to measure velocities of stars all the way out to distances of 180,000 light years from the Sun.

The most recent previous studies of the mass of the Milky Way used mixed samples of 50 to 500 objects. They implied masses up to two-trillion times the mass of the Sun for the total mass of the Galaxy. By contrast, when the SDSS-II measurement within 180,000 light years is corrected to a total-mass measurement, it yields a value slightly under one-trillion times the mass of the Sun.

"The enormous size of SEGUE gives us a huge statistical advantage," said Hans-Walter Rix, director of the Max Planck Institute for Astronomy. "We can select a uniform set of tracers, and the large sample of stars allows us to calibrate our method against realistic computer simulations of the Galaxy." Another collaborator, Timothy Beers of Michigan State University, explained, "The total mass of the Galaxy is hard to measure because we're stuck in the middle of it. But it is the single most fundamental number we have to know if we want to understand how the Milky Way formed or to compare it to distant galaxies that we see from the outside."

All SDSS-II observations are made from the 2.5-meter telescope at Apache Point Observatory in New Mexico. The telescope uses a mosaic digital camera to image large areas of sky and spectrographs fed by 640 optical fibers to measure light from individual stars, galaxies, and quasars. SEGUE's stellar spectra turn flat sky maps into multi-dimensional views of the Milky Way, Beers said, by providing distances, velocities, and chemical compositions of hundreds of thousands of stars.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Journal Reference:

  1. X.-X. Xue et al. The Milky Way's Circular Velocity Curve to 60 kpc and an Estimate of the Dark Matter Halo Mass from Kinematics of 2400 SDSS Blue Horizontal Branch Stars. The Astrophysical Journal, [link]

Cite This Page:

Penn State. "Slimmer Milky Way Galaxy Revealed By New Measurements." ScienceDaily. ScienceDaily, 19 June 2008. <www.sciencedaily.com/releases/2008/06/080618160914.htm>.
Penn State. (2008, June 19). Slimmer Milky Way Galaxy Revealed By New Measurements. ScienceDaily. Retrieved August 2, 2014 from www.sciencedaily.com/releases/2008/06/080618160914.htm
Penn State. "Slimmer Milky Way Galaxy Revealed By New Measurements." ScienceDaily. www.sciencedaily.com/releases/2008/06/080618160914.htm (accessed August 2, 2014).

Share This




More Space & Time News

Saturday, August 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Study Says The Moon Was Deformed Early In Its History

New Study Says The Moon Was Deformed Early In Its History

Newsy (July 31, 2014) Scientists say when the moon was young, it was deformed by the Earth's gravitational pull, which gave it a lemon-like shape. Video provided by Newsy
Powered by NewsLook.com
Supply Ship Takes Off for International Space Station

Supply Ship Takes Off for International Space Station

AFP (July 30, 2014) The European Space Agency's fifth Automated Transfer Vehicle (ATV-5) is takes off to the International Space Station on an Ariane 5 rocket from French Guiana. Duration: 00:34 Video provided by AFP
Powered by NewsLook.com
Raw: Rocket Launches Into Space With Cargo Ship

Raw: Rocket Launches Into Space With Cargo Ship

AP (July 30, 2014) Arianespace launched a rocket Tuesday from French Guiana carrying a robotic cargo ship to deliver provisions to the International Space Station. (July 30) Video provided by AP
Powered by NewsLook.com
In Virginia, the Rise of a New Space Coast

In Virginia, the Rise of a New Space Coast

AP (July 30, 2014) Every summer, tourists make the pilgrimage to Chincoteague Island, Va. to see wild ponies cross the Assateague Channel. But, it's the rockets sending to supplies to the International Space Station that are making this a year-round destination. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins