Featured Research

from universities, journals, and other organizations

New Ways To Regulate Genes, Reduce Heart Damage Identified

Date:
June 24, 2008
Source:
University of Cincinnati
Summary:
Biophysics researchers are trying to reduce post-heart attack damage by studying the way cells die in the heart -- a process controlled by transcription factors.

Keith Jones, PhD, a researcher in UC's department of pharmacology and cell biophysics, is studying the way cells die in the heart.
Credit: University of Cincinnati

Researchers at the University of Cincinnati (UC) are looking for ways to reduce or prevent heart damage by starting where the problem often begins: in the genes.

Related Articles


Following a heart attack, cells die, causing lasting damage to the heart.

Keith Jones, PhD, a researcher in the department of pharmacology and cell biophysics, and colleagues are trying to reduce post-heart attack damage by studying the way cells die in the heart--a process controlled by transcription factors.

Transcription factors are proteins that bind to specific parts of DNA and are part of a system that controls the transfer of genetic information from DNA to RNA and then to protein. Transfer of genetic information also plays a role in controlling the cycle of cells--from cell growth to cell death.

"We call it 'gene regulatory therapy,'" says Jones.

So far, studies have identified the role for an important group of interacting transcription factors and the genes they regulate to determine whether cells in the heart survive or die after blood flow restriction occurs.

Often, scientists use virus-like mechanisms to transfer DNA and other nucleic acids inside the body.

The "virus" takes over other healthy cells by injecting them with its DNA. The cells, then transformed, begin reproducing the virus' DNA. Eventually they swell and burst, sending multiple replicas of the virus out to conquer other cells and repeat the process.

Now, UC researchers are further investigating new, non-viral delivery mechanisms for this transfer of DNA.

"We can use non-viral delivery vehicles to transfer nucleic acids, including transcription factor decoys, to repress activation of specific transcription factors in the heart," Jones says, adding that the researchers have made this successfully work within live animal models. "This means we can block the activity of most transcription factors in the heart without having to make genetically engineered mice."

Jones will be presenting these results at the International Society for Heart Research in Cincinnati, June 17-20.

He says this delivery mechanism involves flooding the cells with "decoys" which trick the transcription factors into binding to the decoys rather than to target genes, preventing them from activating those genes.

"We can use this technology to identify the target genes and then investigate the action of these genes in the biological process," Jones says.

He says that this delivery has limitations and advantages.

"It can be used to block a factor at any point in time and is reversible," he says. "However, right now, a specific delivery route must be used to target the tissue or cell."

Jones and other researchers are hoping that this new technology will allow them to directly address the effects of gene regulation in disease, as opposed to using classical drugs that treat symptoms or have significant adverse outcomes.

"So far, this seems to cause no adverse effects in animals," he says. "We are hopeful and are working toward pre-clinical studies."

This work was initiated by a Dean's Discovery Grant and is funded by the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of Cincinnati. Note: Materials may be edited for content and length.


Cite This Page:

University of Cincinnati. "New Ways To Regulate Genes, Reduce Heart Damage Identified." ScienceDaily. ScienceDaily, 24 June 2008. <www.sciencedaily.com/releases/2008/06/080620195513.htm>.
University of Cincinnati. (2008, June 24). New Ways To Regulate Genes, Reduce Heart Damage Identified. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2008/06/080620195513.htm
University of Cincinnati. "New Ways To Regulate Genes, Reduce Heart Damage Identified." ScienceDaily. www.sciencedaily.com/releases/2008/06/080620195513.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Mistakes Should Serve a Lesson Says WHO

Ebola Mistakes Should Serve a Lesson Says WHO

AFP (Jan. 25, 2015) The World Health Organization&apos;s chief on Sunday admitted the UN agency had been caught napping on Ebola, saying it should serve a lesson to avoid similar mistakes in future. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Disneyland Measles Outbreak Spreads To 5 States

Disneyland Measles Outbreak Spreads To 5 States

Newsy (Jan. 24, 2015) Much of the Disneyland measles outbreak is being blamed on the anti-vaccination movement. The CDC encourages just about everyone get immunized. Video provided by Newsy
Powered by NewsLook.com
Growing Measles Outbreak Worries Calif. Parents

Growing Measles Outbreak Worries Calif. Parents

AP (Jan. 23, 2015) Public health officials are rushing to contain a measles outbreak that has sickened 70 people across 6 states and Mexico. The AP&apos;s Raquel Maria Dillon has more. (Jan. 23) Video provided by AP
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins