Featured Research

from universities, journals, and other organizations

'Electron Trapping' May Impact Future Microelectronics Measurements

Date:
June 29, 2008
Source:
National Institute of Standards and Technology
Summary:
Using an ultra-fast method of measuring how a transistor switches from the "off" to the "on" state, researchers recently reported that they have uncovered an unusual phenomenon that may impact how manufacturers estimate the lifetime of future nanoscale electronics.

Using an ultra-fast method of measuring how a transistor switches from the "off" to the "on" state, researchers at the National Institute of Standards and Technology (NIST) recently reported that they have uncovered an unusual phenomenon that may impact how manufacturers estimate the lifetime of future nanoscale electronics.

The transistor is one of the basic building blocks of modern electronics, and the life expectancy or reliability of a transistor is often projected based on the response to an accelerated stress condition. Changes in the transistor's threshold voltage (the point at which it switches on) are typically monitored during these lifetime projections.

The threshold voltage of certain types of transistors (p-type) is known to shift during accelerated stresses involving negative voltages and elevated temperatures, a characteristic known as "negative bias temperature instability" (NBTI). This threshold voltage shift recovers to varying degrees once the stress has ended. This "recovery" makes the task of measuring the threshold voltage shift very challenging and greatly complicates the prediction of a transistor's lifetime.

As semiconductor devices reach nanoscale (billionth of a meter) dimensions, measuring this device reliability accurately becomes more important because of new materials, new structures, higher operating temperatures and quantum mechanical effects. Many NBTI studies show that the accuracy of the measured threshold voltage shift (and consequent accuracy of the lifetime prediction) depends strongly on how quickly the threshold voltage can be measured after the stress is finished. So, NIST engineers began making threshold voltage measurements at very fast speeds, leaving as little as two microsceconds (millionths of a second) between measurements instead of the traditional half-second interval. What they observed was surprising.

"We found that NBTI recovery not only returned the threshold voltage to its pre-stressed state but briefly passed this mark and temporarily allowed the transistor to behave better than the pre-stressed state," says Jason Campbell, a member of the NIST team (that includes Kin Cheung and John Suehle) who presented this finding at the recent Symposium on VLSI Technology in Hawaii. The NBTI effect generally is believed to result from the buildup of positive charges, he explained, but the new observations at NIST indicate the presence of negative charge as well. NIST's ultra-fast and ultra-sensitive measurements revealed that during recovery, the positive charges dissipated faster than the electrons, giving the system a momentary negative charge and heightened conductivity.

To date, Campbell says, transistor manufacturers only consider the accumulation of positive charges to predict the longevity of their microelectronics devices. "But as these systems get smaller and smaller, the electron trapping phenomenon we observed will need to be considered as well to ensure that transistor lifetime predictions stay accurate," he says. "Our research will now focus on developing and refining the ability to measure that impact."


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "'Electron Trapping' May Impact Future Microelectronics Measurements." ScienceDaily. ScienceDaily, 29 June 2008. <www.sciencedaily.com/releases/2008/06/080627163225.htm>.
National Institute of Standards and Technology. (2008, June 29). 'Electron Trapping' May Impact Future Microelectronics Measurements. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2008/06/080627163225.htm
National Institute of Standards and Technology. "'Electron Trapping' May Impact Future Microelectronics Measurements." ScienceDaily. www.sciencedaily.com/releases/2008/06/080627163225.htm (accessed September 2, 2014).

Share This




More Matter & Energy News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins