Featured Research

from universities, journals, and other organizations

Nanoparticle Research Points To Energy Savings

Date:
July 28, 2008
Source:
National Institute of Standards and Technology
Summary:
NIST experiments with varying concentrations of nanoparticle additives indicate a major opportunity to improve the energy efficiency of large industrial, commercial, and institutional cooling systems known as chillers.

Nanoparticle additives to lubricants commonly combined with refrigerants used in chillers may encourage secondary nucleation -- bubbles on top of bubbles. The double-bubble effect enhances boiling heat transfer and, ultimately, could help to boost the energy efficiency of industrial-sized cooling systems.
Credit: NIST

Adding just the right dash of nanoparticles to standard mixes of lubricants and refrigerants could yield the equivalent of an energy-saving chill pill for factories, hospitals, ships, and others with large cooling systems, suggest the latest results from National Institute of Standards and Technology (NIST) research that is pursuing promising formulations.

NIST experiments with varying concentrations of nanoparticle additives indicate a major opportunity to improve the energy efficiency of large industrial, commercial, and institutional cooling systems known as chillers. These systems account for about 13 percent of the power consumed by the nation's buildings, and about 9 percent of the overall demand for electric power, according to the Department of Energy.

NIST researcher Mark Kedzierski has found that dispersing "sufficient" amounts of copper oxide particles (30 nanometers in diameter) in a common polyester lubricant and combining it with an equally pedestrian refrigerant (R134a) improves heat transfer by between 50 percent and 275 percent. "We were astounded," he says.

Results of this work have been presented at recent conferences and will be reported in an upcoming issue of the ASME Journal of Heat Transfer.

Just how nanomaterial additives to lubricants improve the dynamics of heat transfer in refrigerant/lubricant mixtures is not thoroughly understood. The NIST research effort aims to fill gaps in knowledge that impede efforts to determine and, ultimately, predict optimal combinations of the three types of substances.

"As with all good things, the process is far from foolproof," Kedzierski explains. "In fact, an insufficient amount or the wrong type of particles might lead to degradation in performance."

On the basis of work so far, the researcher speculates several factors likely account for nanoparticle-enabled improvements in heat-transfer performance. For one, nanoparticles of materials with high thermal conductivity improve heat transfer rates for the system. Preliminary results of the NIST research also indicate that, in sufficient concentrations, nanomaterials enhance heat transfer by encouraging more vigorous boiling of the mixture. The tiny particles stimulate, in effect, double bubbles--secondary bubbles that form atop bubbles initiated at the boiling site. Bubbles carry heat away from the surface, and the fact that they're being formed more efficiently because of the nanoparticles means the heat gets transferred more readily.

Other interactions, Kedzierski says, also are likely to contribute to the dramatic performance improvements reported at NIST and elsewhere.

Success in optimizing recipes of refrigerants, lubricants and nanoparticle additives would pay immediate and long-term dividends. If they did not harm other aspects of equipment performance, high-performance mixtures could be swapped into existing chillers, resulting in immediate energy savings. And, because of improved energy efficiency, next-generation equipment would be smaller, requiring fewer raw materials in their manufacture.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "Nanoparticle Research Points To Energy Savings." ScienceDaily. ScienceDaily, 28 July 2008. <www.sciencedaily.com/releases/2008/07/080723143553.htm>.
National Institute of Standards and Technology. (2008, July 28). Nanoparticle Research Points To Energy Savings. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2008/07/080723143553.htm
National Institute of Standards and Technology. "Nanoparticle Research Points To Energy Savings." ScienceDaily. www.sciencedaily.com/releases/2008/07/080723143553.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins