Featured Research

from universities, journals, and other organizations

Researchers Analyze How New Anti-MRSA Antibiotics Function

Date:
July 29, 2008
Source:
University of Notre Dame
Summary:
Researchers provide important insights into promising new antibiotics aimed at combating MRSA. Methicillin-resistant Staphylococcus aureus (MRSA) is a major global health threat that kills approximately 20,000 people in the U.S. alone each year.

A new paper by Shahriar Mobashery, Navari Family Professor in Life Sciences at the University of Notre Dame, and researchers in his lab provides important insights into promising new antibiotics aimed at combating MRSA.

Methicillin-resistant Staphylococcus aureus (MRSA) is a major global health threat that kills approximately 20,000 people in the U.S. alone each year.

Mobashery is a world-renowned expert in antibiotic resistance and enzyme inhibitors and he and his research team have long probed the nuances of MRSA as a superbacterium.

The Notre Dame team investigated two new anti-MRSA β-Lactam antibiotics from the pharmaceutical company Cerexa Inc., which are currently undergoing clinical trails. Both are broad-spectrum antibiotics, but their activities against MRSA and multi-drug-resistant MRSA have been especially noteworthy.

Although current media attention to MRSA may make it seem to be a recent development, the first strain that came to be known as MRSA actually emerged in 1961 in the United Kingdom. This difficult strain of Staphylococcus aureus became a global scourge within a span of a mere few years. Whereas previously Staphylococcus aureus was exquisitely sensitive to β-Lactam antibiotics, a class that includes penicillins (such as methicillin), this variant became resistant to all of the commercially available members of this class of antibiotics. Clinicians had to turn to second lines of antibiotics, which were substantially less effective and often were toxic to the human host.

By the 1980s and 1990s, MRSA had become a serious clinical problem, dreaded by clinicians in health care facilities, prisons and nursing homes. Of late, a new variant of community onset of antibiotic-resistant staph infections emerged outside of institutions.

"For the past 50 or 60 years, we've been able to stay one step ahead of traditional infections," Mobashery said. "However, there are cases of resistance to all eight major existing classes of antibiotics. Actually resistant bacteria are often resistant to multiple classes of antibiotics, not just one or two."

For just over 40 years, scientists have known that bacteria possess a cell wall. Since the health and integrity of the cell wall are critical to the survival of these organisms, it is not surprising that many antibiotics work by either impairing biosynthesis of the cell wall, or simply bind to it to inhibit full structural maturation. In 2006, Mobashery and his team of researchers provided the first clear understanding of the structure of peptidoglycan, the building unit of the bacterial cell wall.

Peptidoglycan, a mesh-like network, is the building block of the bacterial cell wall and neighboring peptidoglycans undergo a so-called "cross-linking" reaction to generate the rigid entity known as the cell wall. Since bacteria cannot regulate their internal pressure, bacterial cells would burst apart and die if cross-linking did not occur.

β-Lactam (e.g., penicillin) and glycopeptide (e.g., vancomycin) antibiotics are designed to impair the bacterial cell wall and inhibit the process of cross-linking, causing bacterial cells to burst and die.

Mobashery and his team have been focusing on a unique protein called penicillin-binding protein 2a (PBP 2a) that MRSA carries on its cell membrane. Previous research has shown that PBP 2a performs the critical cell wall cross-linking reaction.

Mobashery has previously reported that PBP 2a exists in "closed and open" forms. The open form is needed for the physiological functioning of PBP 2a, but the closed form is responsible for the antibiotic resistance manifestations. When the protein interacts with the cell wall at a specific location on its surface, it opens up to carry out the physiological function.

In their latest paper, Mobashery and his team reveal that the new Cerexa antibiotics appear to interact with PBP 2a in a unique way. The antibiotics mimic some of the interactions of the cell wall with PBP 2a, whereby the enzyme is "tricked" to open up as it attempts its physiological function. Once this opening of PBP 2a takes place, its function is inhibited by the novel antibiotics, resulting in bacterial cell death. "Both antibiotics are highly effective in killing MRSA," Mobashery said. "It's a promise that awaits the outcome of the clinical trials."

The paper appears in the July 16 edition of the Journal of the American Chemical Society.


Story Source:

The above story is based on materials provided by University of Notre Dame. Note: Materials may be edited for content and length.


Cite This Page:

University of Notre Dame. "Researchers Analyze How New Anti-MRSA Antibiotics Function." ScienceDaily. ScienceDaily, 29 July 2008. <www.sciencedaily.com/releases/2008/07/080728193225.htm>.
University of Notre Dame. (2008, July 29). Researchers Analyze How New Anti-MRSA Antibiotics Function. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2008/07/080728193225.htm
University of Notre Dame. "Researchers Analyze How New Anti-MRSA Antibiotics Function." ScienceDaily. www.sciencedaily.com/releases/2008/07/080728193225.htm (accessed April 18, 2014).

Share This



More Plants & Animals News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins