Featured Research

from universities, journals, and other organizations

MicroRNA Implicated As Molecular Factor In Alcohol Tolerance

Date:
August 1, 2008
Source:
University of Massachusetts Medical School
Summary:
A new study in the journal Neuron indicates that microRNA may influence the development of alcohol tolerance, a hallmark of alcohol abuse and dependence.

In recent years, a class of small molecules known as microRNA have been found to play an important role in regulating gene products in most animal and plant species. A new study now indicates that microRNA may influence the development of alcohol tolerance, a hallmark of alcohol abuse and dependence.

Researchers supported by the National Institute on Alcohol Abuse and Alcoholism (NIAAA) report the findings in the July 31 issue of the journal Neuron.

"This is an intriguing contribution to efforts aimed at identifying the molecular bases of alcohol tolerance," noted NIAAA Director Ting-Kai Li, MD.

Tolerance is the decrease in sensitivity to alcohol that develops with repeated exposures to alcohol over time. Individuals who develop high tolerance (low sensitivity) to alcohol are at increased risk for becoming alcohol dependent. Thus, an important research objective has been to identify the adaptations within individual molecules that underlie tolerance.

In previous experiments, Steven N. Treistman, PhD, Professor of Psychiatry at the University of Massachusetts Medical School (UMMS), and colleagues at the university's Brudnick Neurospychiatric Research Institute (BNRI), determined that a brain cell membrane structure known as the BK channel develops tolerance to alcohol, particularly in the supraoptic nucleus and the striatum, two brain regions important in alcohol's effects. In both regions, alcohol tolerance was manifested as decreased alcohol sensitivity and reduced BK channel density. Previous studies have also shown that there are numerous variants of the BK channel gene.

In the current study, researchers led by Dr. Treistman, who is the director of the BNRI, examined whether microRNA might be involved in the alcohol tolerance observed in the BK channel.

In test tube experiments, the researchers showed that the amount of a specific microRNA molecule known as miR-9 increases in brain cells within minutes of exposure to alcohol. They also found that miR-9 blocks the expression of BK gene variants that contain a specific binding site for the molecule, while sparing those that lack a miR-9 binding site. Remarkably, the BK gene variants were destroyed exhibited high alcohol sensitivity, while those that remained showed significantly lower sensitivity, consistent with the development of tolerance.

"This represents a novel and elegant mechanism by which neurons are able to adapt to alcohol," said Treistman. "Moreover, since adaptation, or tolerance, to the drug likely contributes to alcohol abuse, our findings identify a potential molecular target for therapeutic intervention." Treistman credited his colleagues, especially Andrzej Z. Pietrzykowski, MD, PhD, research assistant professor of psychiatry, for their contributions to this important work.

A widely published expert on the molecular basis of addiction—in particular, the changes in the brain that occur as a function of drug exposure, which may make an individual prone to substance abuse and the compulsive behavior associated with drug addiction—Dr. Treistman noted that the microRNA process observed in this study may represent a general mechanism of neuronal adaptation to alcohol, with miR-9 playing a pivotal role in a complex regulatory network.

"This study demonstrates for the first time that alcohol exposure can cause rapid changes in microRNA levels, altering gene expression and perhaps behavior," said Antonio Noronha, PhD, director of NIAAA's Division of Neuroscience and Behavior. "In future studies, it will be interesting to determine if similar microRNA-based regulatory mechanisms influence alcohol problems in human populations."

This study was also supported by the Alcoholic Beverage Medical Research Foundation.


Story Source:

The above story is based on materials provided by University of Massachusetts Medical School. Note: Materials may be edited for content and length.


Cite This Page:

University of Massachusetts Medical School. "MicroRNA Implicated As Molecular Factor In Alcohol Tolerance." ScienceDaily. ScienceDaily, 1 August 2008. <www.sciencedaily.com/releases/2008/07/080730140839.htm>.
University of Massachusetts Medical School. (2008, August 1). MicroRNA Implicated As Molecular Factor In Alcohol Tolerance. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2008/07/080730140839.htm
University of Massachusetts Medical School. "MicroRNA Implicated As Molecular Factor In Alcohol Tolerance." ScienceDaily. www.sciencedaily.com/releases/2008/07/080730140839.htm (accessed July 29, 2014).

Share This




More Mind & Brain News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com
University Quiz Implies Atheists Are Smarter Than Christians

University Quiz Implies Atheists Are Smarter Than Christians

Newsy (July 25, 2014) An online quiz from a required course at Ohio State is making waves for suggesting atheists are inherently smarter than Christians. Video provided by Newsy
Powered by NewsLook.com
Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

AFP (July 24, 2014) A so-called drugs rehab 'clinic' is closed down in Pakistan after police find scores of ‘patients’ chained up alleging serial abuse. Duration 03:05 Video provided by AFP
Powered by NewsLook.com
New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins