Featured Research

from universities, journals, and other organizations

Water Is 'Designer Fluid' That Helps Proteins Change Shape

Date:
August 7, 2008
Source:
University of Illinois at Urbana-Champaign
Summary:
According to new research, old ideas about water behavior are all wet. Ubiquitous on Earth, water also has been found in comets, on Mars and in molecular clouds in interstellar space. Now, scientists say this common fluid is not as well understood as we thought.

Water is a 'designer fluid' that helps proteins change shape.
Credit: iStockphoto/Matthias Haas

According to new research, old ideas about water behavior are all wet. Ubiquitous on Earth, water also has been found in comets, on Mars and in molecular clouds in interstellar space. Now, scientists say this common fluid is not as well understood as we thought.

"Water, as we know it, does not exist within our bodies," said Martin Gruebele, a William H. and Janet Lycan Professor of Chemistry at the University of Illinois. "Water in our bodies has different physical properties from ordinary bulk water, because of the presence of proteins and other biomolecules. Proteins change the properties of water to perform particular tasks in different parts of our cells."

Consisting of two hydrogen atoms and one oxygen atom, water molecules are by far the body's largest component, constituting about 75 percent of body volume. When bound to proteins, water molecules participate in a carefully choreographed ballet that permits the proteins to fold into their functional, native states. This delicate dance is essential to life.

"While it is well known that water plays an important role in the folding process, we usually only look at the motion of the protein," said Gruebele, who also is the director of the U. of I.'s Center for Biophysics and Computational Biology, and a researcher at the Beckman Institute. "This is the first time we've been able to look at the motion of water molecules during the folding process."

Using a technique called terahertz absorption spectroscopy, Gruebele and his collaborator Martina Havenith at the Ruhr-University Bochum studied the motions of a protein on a picosecond time scale (a picosecond is 1 trillionth of a second).

The technique, which uses ultrashort laser pulses, also allowed the researchers to study the motions of nearby water molecules as the protein folded into its native state.

The researchers present their findings in a paper published July 23 in the online version of the chemistry journal Angewandte Chemie.

Terahertz spectroscopy provides a window on protein-water rearrangements during the folding process, such as breaking protein-water-hydrogen bonds and replacing them with protein-protein-hydrogen bonds, Gruebele said. The remaking of hydrogen bonds helps organize the structure of a protein.

In tests on ubiquitin, a common protein in cells, the researchers found that water molecules bound to the protein changed to a native-type arrangement much faster than the protein. The water motion helped establish the correct configuration, making it much easier for the protein to fold.

"Water can be viewed as a 'designer fluid' in living cells," Gruebele said. "Our experiments showed that the volume of active water was about the same size as that of the protein."

The diameter of a single water molecule is about 3 angstroms (an angstrom is about one hundred-millionth of a centimeter), while that of a typical protein is about 30 angstroms. Although the average protein has only 10 times the diameter of a water molecule, it has 1,000 times the volume. Larger proteins can have hundreds of thousands times the volume. A single protein can therefore affect, and be influenced by, thousands of water molecules.

"We previously thought proteins would affect only those water molecules directly stuck to them," Gruebele said. "Now we know proteins will affect a volume of water comparable to their own. That's pretty amazing."

With Gruebele and Havenith, co-authors of the paper are graduate student Seung Joong Kim at the U. of I., and graduate student Benjamin Born at the Ruhr-University Bochum.

Funding was provided by the Human Frontier Science Program and the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "Water Is 'Designer Fluid' That Helps Proteins Change Shape." ScienceDaily. ScienceDaily, 7 August 2008. <www.sciencedaily.com/releases/2008/08/080806113314.htm>.
University of Illinois at Urbana-Champaign. (2008, August 7). Water Is 'Designer Fluid' That Helps Proteins Change Shape. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2008/08/080806113314.htm
University of Illinois at Urbana-Champaign. "Water Is 'Designer Fluid' That Helps Proteins Change Shape." ScienceDaily. www.sciencedaily.com/releases/2008/08/080806113314.htm (accessed July 30, 2014).

Share This




More Matter & Energy News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Stranded Whale Watching Boat Returns to Boston

Stranded Whale Watching Boat Returns to Boston

Reuters - US Online Video (July 29, 2014) Passengers stuck overnight on a whale watching boat return safely to Boston. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins