Featured Research

from universities, journals, and other organizations

Brain Cells Called Astrocytes Undergo Reorganization And May Engulf Attacking T Cells

Date:
August 21, 2008
Source:
Cedars-Sinai Medical Center
Summary:
When virally infected cells in the brain called astrocytes come in contact with antiviral T cells of the immune system, they undergo a unique series of changes that dramatically reorganize their shape and function, according to researchers. Intriguingly, the new data indicate that astrocytes may defend themselves from attacking T cells by engulfing (gobbling up) the aggressors.

When virally infected cells in the brain called astrocytes come in contact with anti-viral T cells of the immune system, they undergo a unique series of changes that dramatically reorganize their shape and function, according to researchers at the Board of Governors Gene Therapeutics Research Institute at Cedars-Sinai Medical Center. Intriguingly, the new data indicate that astrocytes may defend themselves from attacking T cells by engulfing (gobbling up) the aggressors.

"Further studies into the cellular and molecular processes leading to these changes could have implications for understanding and treating brain infections, brain tumors and neurodegenerative disorders," said Pedro R. Lowenstein, M.D., Ph.D., director of the institute and holder of the Bram and Elaine Goldsmith Endowed Chair in Gene Therapeutics. Lowenstein is senior author of an article on the new findings, published on Aug. 20 in PLoS ONE, an open-access, peer-reviewed, online journal of the Public Library of Science.

Astrocytes play numerous roles in maintaining the structure, metabolism and function of the brain. They provide nutrients to neurons, are integral in the formation of the blood-brain-barrier, and have essential functions in controlling neuronal activity.

Normal astrocytes are star-shaped, with octopus-like tentacles extending outward to ensheath neurons and their synapses. When they are exposed to trauma, stroke or neurodegenerative processes, they become enlarged symmetrically, generally retaining their original form.

But according to the new laboratory research, when T cells attack astrocytes that are infected with a virus or are recognized as foreign, the astrocytes undergo a major structural reorganization. The numerous "tentacles" withdraw and the cell changes from being multipolar to unipolar, displaying one single major protrusion that extends toward the "immunological synapse" where the T-cell has made contact onto its target astrocyte.

"Astrocyte polarization, as opposed to hypertrophy, may be due to the fact that T cells engage in a very focused attack and the astrocytes respond in a directed, polarized manner. We know that the astrocytes respond in this polarized manner but we are continuing to investigate precisely why," said Maria G. Castro, Ph.D., co-director of the Board of Governors Gene Therapeutics Research Institute.

"We believe this is part of a defensive astrocyte response that may serve to destroy the attacking T cells," Lowenstein said. "When a T cell recognizes an astrocyte infected with a virus or identified as a foreign cell, it launches an attack. In response, the astrocyte polarizes toward the T cell and may actually end up engulfing the aggressor. If so, this could be a novel (unique) mechanism of defense by brain cells against immune cells."

Understanding the cellular and molecular mechanisms underlying this response could lead to improvements in gene therapy to the brain, as well as improvements for brain tumors, brain infections, autoimmune diseases of the brain and brain neurodegenerative diseases.

Additional research in this area may lead to new insights into how the immune system clears viral infections, transplants or tumors from the brain. The authors suggest this could have implications in the treatment of HIV/AIDS, West Nile virus and other viral infections, brain cancer, autoimmune diseases, and the use of transplantation for the treatment of Parkinson's disease.

This study was funded in part by NIH, CSMC, and the Bram and Elaine Goldsmith Chair in Gene Therapeutics.


Story Source:

The above story is based on materials provided by Cedars-Sinai Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Barcia et al. T Cells' Immunological Synapses Induce Polarization of Brain Astrocytes In Vivo and In Vitro: A Novel Astrocyte Response Mechanism to Cellular Injury. PLoS ONE, 2008; 3 (8): e2977 DOI: 10.1371/journal.pone.0002977

Cite This Page:

Cedars-Sinai Medical Center. "Brain Cells Called Astrocytes Undergo Reorganization And May Engulf Attacking T Cells." ScienceDaily. ScienceDaily, 21 August 2008. <www.sciencedaily.com/releases/2008/08/080820163245.htm>.
Cedars-Sinai Medical Center. (2008, August 21). Brain Cells Called Astrocytes Undergo Reorganization And May Engulf Attacking T Cells. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2008/08/080820163245.htm
Cedars-Sinai Medical Center. "Brain Cells Called Astrocytes Undergo Reorganization And May Engulf Attacking T Cells." ScienceDaily. www.sciencedaily.com/releases/2008/08/080820163245.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins